来宝网 2014/1/13点击1476次
Bladder
Bladder smooth muscle cells
1. Adam RM, Eaton SH, Estrada C, Nimgaonkar A, Shih SC, Smith LE, Kohane IS, Bagli D, Freeman MR. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells. Physiol Genomics 20(1):36-44, 2004.
2. Adam RM, Roth JA, Cheng HL, Rice DC, Khoury J, Bauer SB, Peters CA, Freeman MR. Signaling through PI3K/Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells. J Urol 169(6):2388-2393, 2003.
3. Aitken KJ, Block G, Lorenzo A, Herz D, Sabha N, Dessouki O, Fung F, Szybowska M, Craig L, Bagli DJ. Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am J Pathol 169(2):459-470, 2006.
4. Aitken KJ, Tolg C, Panchal T, Leslie B, Yu J, Elkelini M, Sabha N, Tse DJ, Lorenzo AJ, Hassouna M, Bägli DJ. Mammalian target of rapamycin (mTOR) induces proliferation and de-differentiation responses to three coordinate pathophysiologic stimuli (mechanical strain, hypoxia, and extracellular matrix remodeling) in rat bladder smooth muscle. Am J Pathol 176(1):304-319, 2010. Epub 2009 Dec 17.
5. Chaqour B, Yang R, Sha Q. Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-κB activation. J Biol Chem 281(29):20608-20622, 2006.
6. Estrada CR, Adam RM, Eaton SH, Bägli DJ, Freeman MR. Inhibition of EGFR signaling abrogates smooth muscle proliferation resulting from sustained distension of the urinary bladder. Lab Invest 86(12):1293-1302, 2006.
7. Galvin DJ, Watson RW, Gillespie JI, Brady H, Fitzpatrick JM. Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro. Am J Physiol Renal Physiol 283(6):F1192-F1199, 2002.
8. Halachmi S, Aitken KJ, Szybowska M, Sabha N, Dessouki S, Lorenzo A, Tse D, Bagli DJ. Role of signal transducer and activator of transcription 3 (STAT3) in stretch injury to bladder smooth muscle cells. Cell Tissue Res 326(1):149-158, 2006.
9. Hubschmid U, Leong-Morgenthaler PM, Basset-Dardare A, Ruault S, Frey P. In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions. Tissue Engineering 11(1-2):161-171, 2005.
10. Kushida N, Kabuyama Y, Yamaguchi O, Homma Y. Essential role for extracellular Ca2+ in JNK activation by mechanical stretch in bladder smooth muscle cells. Am J Physiol Cell Physiol 281(4):C1165-C1172, 2001.
11. Nguyen HT, Adam RM, Bride SH, Park JM, Peters CA, Freeman MR. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol 279(4):C1155-C1167, 2000.
12. Orsola A, Adam RM, Peters CA, Freeman MR. The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells. Urology 59(5):779-783, 2002.
13. Orsola A, Estrada CR, Nguyen HT, Retik AB, Freeman MR, Peters CA, Adam RM. Growth and stretch response of human exstrophy bladder smooth muscle cells: molecular evidence of normal intrinsic function. BJU Int 95(1):144-148, 2005.
14. Park JM, Adam RM, Peters CA, Guthrie PD, Sun Z, Klagsbrun M, Freeman MR. AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol Cell Physiol 277:C294-C301, 1999.
15. Park JM, Borer JG, Freeman MR, Peters CA. Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol Cell Physiol 275:C1247-C1254, 1998.
16. Park JM, Yang T, Arend LJ, Schnermann JB, Peters CA, Freeman MR, Briggs JP. Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch. Am J Physiol Renal Physiol 276:F129-F136, 1999.
17. Persson K, Sando JJ, Tuttle JB, Steers WD. Protein kinase C in cyclic stretch-induced nerve growth factor production by urinary tract smooth muscle cells. Am J Physiol Cell Physiol 269:C1018-C1024, 1995.
18. Steers WD, Broder SR, Persson K, Bruns DE, Ferguson JE 2nd, Bruns ME, Tuttle JB. Mechanical stretch increases secretion of parathyroid hormone-related protein by cultured bladder smooth muscle cells. J Urol 160(3 Pt 1):908-912, 1998.
19. Upadhyay J, Aitken KJ, Damdar C, Bolduc S, Bagli DJ. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J Urol 169(2):750-755, 2003.
20. Yang R, Amir J, Liu H, Chaqour B. Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 36(1):1-14, 2008. Epub 2008 Oct 14.
21. Yu G, Bo S, Xiyu J, Enqing X. Effect of bladder outlet obstruction on detrusor smooth muscle cell: an in vitro study. Journal of Surgical Research 114(2):202-209, 2003.
22. Zhou D, Herrick DJ, Rosenbloom J, Chaqour B. Cyr61 mediates the expression of VEGF, αv-integrin, and α-actin genes through cytoskeletally based mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol 98(6):2344-2354, 2005.
美国Flexcellint国际公司,成立于1987年,该公司专注于细胞力学产品的设计和制造。以提供独特的体外细胞拉应力、压应力和流体剪切应力加载刺激系统以及配套的培养板、硅胶膜载片等耗材闻名于世。
该系统智能、精准诱导来自各种细胞、组织在拉力、压力和流体切应力作用下发生的生化生理变化,专业、细腻的阐释了体外细胞、组织机械力刺激加载、力学信号感受和响应机制。对研究细胞的形态结构及功能,细胞的生长、发育、成熟、增殖、衰老、凋亡、死亡及癌变以及通路表达,细胞信号传导及基因表达的调控,细胞的分化及其调控机理具有重要意义。 1、FX-5000T细胞牵张拉伸应力加载系统(Flexcell FX5000 Tension system) 1)该系统对二维、三维细胞和组织提供轴向和圆周应力加载; 2)基于柔性膜基底变形、受力均匀; 3)可实时观察细胞、组织在应力作用下的反应; 4)可有选择性地封阻对细胞的应力加载; 5)同时兼备多通道细胞压力加载功能; 6)与Flex Flow平行板流室配套,可以在牵拉细胞的同时施加流体切应力; 7)多达4通道,可4个不同程序同时运行,进行多个不同拉伸形变率对比实验; 8)同一程序中可以运行多种频率,多种振幅和多种波形; 9)更好地控制在超低或超高应力下的波形; 10)多种波形种类:静态波形、正旋波形、心动波形、三角波形、矩形以及各种特制波形; 11)电脑系统对牵张拉伸力加载周期、大小、频率、持续时间精确智能调控 典型应用范围:加载分析各种细胞在应力刺激下的生物化学反应: 例如:骨骼细胞、肺细胞、心肌细胞、血细胞、皮肤细胞、肌腱细胞、韧带细胞、软骨细胞和骨细胞、肾膀胱细胞、平滑肌细胞/尿路上皮及尿路上皮细胞、眼上皮细胞、眼小梁组织细胞、肾小管上皮细胞、肠上皮细胞、胃上皮细胞等细胞牵张拉伸力加载。
2、FX-5000C细胞压力加载系统(flexcell FX5000 Compression system)——提供样机体验 1)该系统对各种组织、三维细胞培养物提供周期性或静态的压力加载; 5)同时兼备多通道细胞牵拉力加载功能;
6)多达4通道,可4个不同程序同时运行,进行多个不同压力形变率对比实验;
7)同一程序中可以运行多种频率(0.01- 5 Hz),多种振幅和多种波形;8)更好地控制在超低或超高应力下的波形; 9)多种波形种类:静态波形、正旋波形、心动波形、三角波形、矩形以及各种特制波形; 10)电脑系统对压力加载周期、大小、频率、持续时间精确智能调控 典型应用范围:检测各种组织和细胞在压力作用下的生物化学反应,例如:胃上皮细胞、肠上皮细胞、软骨组织, 椎间盘骨组织,肌腱组织,韧带组织,以及从肌肉、肺(肺细胞)、心脏、血管、皮肤、肌腱、韧带、软骨和骨中分离出来的细胞
3、TissueTrain可拉伸三维细胞组织培养系统(Flexcell TissueTrain System)——提供样机体验 系统功能亮点: 1)三维细胞牵张应力加载刺激:对生长在三维状态下的细胞进行静态的或者周期性的应力刺激 2)三维细胞培养:使用三维组织培养模具和三维细胞培养板可以进行三维细胞培养 3)三维细胞应力加载:通过Flexcell应力加载系统和弧矩形加载平台对生长在三维环境下的 细胞进行单轴向或者双轴向的静态或者周期性的应力加载实验 4)动力模拟实验:可建立特制的各种模拟实验:心率模拟实验,步行模拟实验,跑动模拟实验和其他动力模拟实验 5)生物人工组织构建:可构建长度达35mm的生物人工组织 6)观察细胞应力下实时反映:使用显微镜实时观察细胞在三维状态下的反应 7)多种基质蛋白包被的尼龙网锚可以加强细胞与网锚的结合 4、STR-4000细胞流体切应力系统(Flexcell Fluid Shear Stress Device)——提供样机体验 4.1、流体切应力加载分析设备——Streamer剪切力设备
5、Flexflow平行板流室系统提供流体切应力同时抻拉细胞 FlexcellFlexFlow显微切应力加载设备(SHEAR Stress device)
|