ROS Brite? 670
|
Cat # | 16002 | Storage | F/D/L (see storage codes below) | Unit Size | 1 mg | Price | $195 | Ex (nm) | 639 | Em (nm) | 660 | MW | 758.85 | Solvent | DMSO |
|
Reactive oxygen species (ROS) are chemically reactive molecules containing oxygen. Examples include superoxide, hydroxyl radical, singlet oxygen and peroxides. ROS is highly reactive due to the presence of unpaired valence shell electrons. ROS forms as a natural byproduct of the normal metabolism of oxygen and have important roles in cell signaling and homeostasis. However, during times of environmental stress (e.g., UV or heat exposure), ROS levels can increase dramatically. This may result in significant damage to cell structures. Cumulatively, this is known as oxidative stress. ROS are also generated by exogenous sources such as ionizing radiation. Under conditions of oxidative stress, ROS production is dramatically increased, resulting in subsequent alteration of membrane lipids, proteins, and nucleic acids. Oxidative damage of these biomolecules is associated with aging as well as with a variety of pathological events, including atherosclerosis, carcinogenesis, ischemic reperfusion injury, and neurodegenerative disorders. ROS Brite? 670 reagent is a new fluorogenic probe to measure oxidative stress in cells using conventional fluorescence microscopy, high-content imaging, microplate fluorometry, or flow cytometry. The cell-permeant ROS Brite? 670 reagent is nonfluorescent and produces bright near-infrared fluorescence upon ROS oxidation. The resulting fluorescence can be measured using fluorescence imaging, high-content imaging, microplate fluorometry, or flow cytometry.