在过去的几年中,半导体器件和IC生产等微电子技术已发展到深亚微米阶段及纳米阶段。为了追求晶片更高的运算速度与更高的效能,三十多年来,半导体产业遵循著摩尔定律(Moore’s Law):每十八个月单一晶片上电晶体的数量倍增,持续地朝微小化努力。为继续摩尔定律,在此期间,与微电子领域相关的微/纳加工技术得到了飞速发展,科学家提出各种解决方案如:图形曝光(光刻)技术、材料刻蚀技术、薄膜生成技术等。其中,图形曝光技术(微影术)是微电子制造技术发展的主要推动者,正是由于曝光图形的分辨率和套刻精度的不断提高,促使集成电路集成度不断提高和制备成本持续降低。
电子束曝光系统(electron beam lithography, EBL)是一种利用电子束在工件面上扫描直接产生图形的装置。由于SEM、STEM及FIB的工作方式与电子束曝光机十分相近,美国JC Nabity Lithography Systems公司成功研发了基于改造商品SEM、STEM或FIB的电子束曝光装置(Nanometer Pattern Generation System纳米图形发生系统,简称NPGS,又称电子束微影系统)。电子束曝光技术具有可直接刻画精细图案的优点,且高能电子束的波长短(< 1 nm),可避免绕射效应的困扰,是实验室制作微小纳米电子元件最佳的选择。相对于购买昂贵的专用电子束曝光机台,以既有的SEM等为基础,外加电子束控制系统,透过电脑介面控制电子显微镜中电子束之矢量扫描,以进行直接刻画图案,在造价方面可大幅节省,且兼具原SEM 的观测功能,在功能与价格方面均具有优势。由于其具有高分辨率以及低成本等特点,在北美研究机构中,JC Nabity的NPGS是最热销的配套于扫描电镜的电子束微影曝光系统,而且它的应用在世界各地越来越广泛。
NPGS的技术目标是提供一个功能强大的多样化简易操作系统,结合使用市面上已有的扫描电镜、扫描透射电镜或聚焦离子束装置,用来实现艺术级的电子束或离子束平版印刷技术。NPGS能成功满足这个目的,得到了当前众多用户的强烈推荐和一致肯定。
应用简述
NPGS电镜改装系统能够制备出具有高深宽比的微细结构纳米线条,从而为微电子领域如高精度掩模制作、微机电器件制造、新型IC研发等相关的微/纳加工技术提供了新的方法。NPGS系统作为制作纳米尺度的微小结构与电子元件的技术平台,以此为基础可与各种制程技术与应用结合。应用范围和领域取决于客户的现有资源,例如: NPGS电子束曝光系统可与等离子应用技术做最有效的整合,进行各项等离子制程应用的开发研究,简述如下:
(一) 半导体元件制程
等离子制程已广泛应用于当前半导体元件制程,可视为电子束微影曝光技术的下游工程。例如:
(1) 等离子刻蚀(plasma etching)
(2) 等离子气相薄膜沉积(plasma-enhanced chemical vapor deposition, PECVD)
(3) 溅镀(sputtering)
(二) 微机电元件制程(Semiconductor Processing)
微机电元件在制程上与传统半导体元件制作有其差异性。就等离子相关制程而言,深刻蚀(deep etching)是主要的应用,其目标往往是完成深宽比达到102 等级的深沟刻蚀或晶圆穿透刻蚀。而为达成高深宽比,深刻蚀采用二种气体等离子交替的过程。刻蚀完成后可轻易以氧等离子去除侧壁覆盖之高分子。在微机电元件制作上,深刻蚀可与电子束微影曝光技术密切结合。电子束微影曝光技术在图案设计上之自由度十分符合复杂多变化的微机电元件构图。一旦完成图案定义,将转由深刻蚀技术将图案转移到晶圆基板。