|
5.1仪表性能方面 (1) 精确度、重复性、线性度、流量范围和范围度 表4.3所示为流量测量节流装置的主要技术参数,标准节流装置规定有严格的使用范围,包括管径、节流件孔径、直径比、雷诺数范围、管壁粗糙度等。在这些使用范围内可以应用标准文件(GB/T 2624)中提供的流出系数和可膨胀性系数,如表4.4所示。应该指出,非标准节流装置的使用范围及其计算式仅作参考,一般来说,它要可靠地应用还是实流校准为好。如果节流装置进行个别实流校准,则其使用范围不受表列参数限制,例如开封仪表厂曾实流校准管径达DN1600的文丘里管流量计用于水流量计量,又如标准规定管径应不小于DN50,现在使用的小管径节流装置则远低于此值,但是它们必须逐台进行个别校准才能投用。由表4.4可见,标准喷嘴的流出系数的不确定度远大于标准孔板,这是由于廓形节流件的精确复制比较困难,如果标准喷嘴进行实流校准,则亦可得高精确度。DPF的精确度在很大程度上决定于现场的使用条件,如果节流装置的制造质量符合要求,则影响因素主要为两方面:流体的物性参数的确定和流体流动特性是否符合标准要求。这两方面我们在流体特性和安装条件中再谈。 整套流量计的精确度还决定于差压变送器和流量显示仪的精确度。目前有一种倾向尽量采用高精度的差压变送器,在流量测量不确定度计算式可以看到,当其他参数的精确度不高时采用高精度差压变送器并不能起多大作用。流量显示仪的作用主要在监视运行参数的稳定性等方面,它的数据转换精度一般是无问题的。因此,要提高测量的精确度应有一个全面估计,这样才能作出技术经济性最佳方案的选择。 我们再次强调,DPF是一种从设计、制造到安装使用要求很严格的仪表,任何一个环节的失误都会产生很大的误差,反过来说,如果你严格遵循标准规定,它的精确测量是可保证的。DPF的重复性与其他流量计(电磁式,容积式,涡轮,涡街等)相比要低,其原因为输出信号为模拟值易受干扰,尤其差压引压管线这一环节易使信号产生干扰波动,正是由于重复性不高,影响到其精确度的提高。 DPF的输出信号与流量为平方关系,是非线性仪表,这是造成范围度窄的原因,实际上节流装置在广阔的雷诺数范围内其流出系数是稳定的,因此目前采用两种(或多种)量程的差压变送器可以拓宽其范围度(大于10:1以上)。近年已投用的弹性加载变面积变压头节流装置则应用其他工作原理增加其范围度(可达100:1)。 ⑵压力损失 DPF压力损失大是它的一个弱点,但是若仔细分析一下这里还有一些选用时可以选择的余地。在DPF各类节流装置中孔板和喷嘴是压损较大的节流件,不过这里亦有差别。在同样的流量及β值时喷嘴的压损只为孔板压损的30%-50%,也就是说喷嘴是较低压损的。各种流量管(文丘里管、道尔管、罗洛斯管、通用文丘里管等)则是低压损的节流装置,它们压损仅为孔板的20%,甚至低达5%-10%。这些节流装置的开发应用是今后一个努力方向。当然,另一类动压头式DPF(均速管流量计)则以低压损著称。 5.2 流体特性方面 流体特性分两方面考虑。 ⑴流体物性参数的确定 流体物性参数包括密度、粘度、等熵指数、湿度等,这些参数有的直接进入流量方程,有的对流出系数、可膨胀性系数等产生影响。在这些参数中密度是最重要的。对密度的精确度与对差压的精确度有同等数量级的要求,但是密度的精确确定却遇到了困难,它是影响DPF精确度提高的一个重要原因。密度精确度不高的原因是,一般借助密度与组分、压力和温度的函数关系确定它,但是这个关系式的精确度数量往往并不明确,尤其对于混合物普遍缺乏精确的函数式。在这种情况下采用密度计测量是较好的,但是遗憾的是目前密度计品种规格不能满足实际需要,并且价格贵,可靠性不高亦阻碍其广泛使用。 粘度的精确度要求可以低些,它是用来计算雷诺数的,而雷诺数对流出系数的影响并不敏感;粘度的另一作用是确定被测介质是否为牛顿流体,目前流量测量标准都限定被测介质应为牛顿流体。而由于石油化工等工业的发展,愈来愈多非牛顿流体需要测量,因此粘度这个参数今后会引起更大的重视的。 流体物性参数的确定除混合流体外,在高参数(高压、高温、低温等)领域遇到了困难。许多物性参数缺乏高参数下的数据。 (2)流体的腐蚀、磨蚀、结垢、脏污等 这些特性对流量计使用的可靠性造成很大的威胁。DPF是以几何尺寸来确定流量与信号的关系的,在长期使用中保持几何尺寸恒定成为保证测量精确度不变的关键因素。在使用中几何尺寸变化不易觉察,也就是说流量特性已变而不知道,这是很危险的。如何对付这个困难问题仍在探索中,例如采用可换孔板节流装置就是为了便于检查而采取的措施,另外采用并联测量管路可以定期检查清洗等等。流体的上述特性甚至用户都不一定完全掌握的,需要了解流体这些特性以便采取预防措施,在不明确的情况下有时需要进行一些试验。 表4.3 各类节流装置主要技术参数
节流件名称 |
管道内径/mm |
孔径/mm |
直径比β |
管道雷诺数ReD |
Ec /% |
Eε /% |
管壁粗糙度Ra/D |
备 注 |
角接取压孔板 D-D/2取压孔板 |
50≤D≤1000 |
d≥12.5 |
0.1≤β≤0.75 |
0.1≤β≤0.5 ReD≥4000 β>0.5 ReD≥16000β2 |
0.1≤β≤0.2 (0.7-β)% 0.2≤β≤0.6 0.5% 0.6<β≤0.75 (1.667β-0.5)%
|
3.5× △p/kp1
|
Ra/D≤(0.26~15)×10-4 |
EcD<71.12mm 再算术相加 0.9(0.75-β) (2.8-D/25.4) (D:mm) 不确定度 |
法兰取压孔板 |
50≤D≤1000 |
d≥12.5 |
0.1≤β≤0.75 |
ReD≥4000 ReD≥170β2D (D:mm) |
ISA1932喷嘴
|
50≤D≤500 |
|
0.3≤β≤0.8 |
0.30≤β<0.44 7×104≤ReD≤107 0.44≤β≤0.80 2×104≤ReD≤107 |
β≤0.6 0.8% β>0.6 (2β-0.4)% |
|
Ra/D≤(1.2~8)×10-4 |
|
长径喷嘴 |
50≤D≤630 |
|
0.2≤β≤0.8 |
104≤ReD≤107 |
2.0% |
2△p/p1 |
Ra/D≤3.2×10-4 |
|
经典文丘里粗铸收缩段 机械加工收缩段 粗焊铁板收缩段 |
100≤D≤800 D≥50 200≤D≤1200 |
|
0.3≤β≤0.75 0.4≤β≤0.75 0.4≤β≤0.7 |
2×105≤ReD≤2×106 2×105≤ReD≤1×106 2×105≤ReD≤2×106 |
0.7%
1%
1.5% |
(4+100β8)△p/p1 |
Ra/D≤3.2×10-4 |
|
文丘里喷嘴 |
65≤D≤500 |
d≥50 |
0.316≤β≤0.775 |
1.5×105≤ReD≤2×106 |
(1.2+1.5β4)% |
(4+100β8)△p/p1 |
Ra/D≤(1.2~8)×10-4 |
|
1/4圆孔板 |
25≤D≤500 |
d≥15 |
0.245≤β≤0.6 |
ReD>250 ReD≤105β |
β>0.316 2% β≤0.316 2.5% |
(4×△p/p1)% |
|
|
锥形入口孔板 |
25≤D≤500 |
d>6 |
0.1≤β≤0.316 |
80≤ReD≤2×105β |
2% |
33(1-ε)% |
|
|
偏心孔板
|
100≤D≤1000 |
d≥50 |
0.46≤β≤0.84 |
2×105β2≤ReD≤106β |
β≤0.75 1% β>0.75 2% |
(4×△p/p1)% |
|
|
圆缺孔板 |
150≤D≤350 |
|
0.35≤β≤0.75 |
104≤ReD≤106 |
1.5% |
(4×△p/p1)% |
|
| |
表4.4 各类节流装置的流出系数和可膨胀性系
节流件 |
流 出 系 数 C |
孔 板
|
里德-哈利斯/加拉赫(Reader-Harris/Gallagher)公式 C=0.5961+0.0261β2-0.216β8+0.000521(106β/ReD)0.7+(0.0188+0.0063A)β3.5(106/ReD)0.3+(0.043+0.080e-10L1-0.123e-7L1)(1-0.11A)β4/(1-β4)-0.031(M‘2- )β1.3 在D<71.12mm情况下,上述公式应加上下列数项 +0.011(0.75-β)(2.8-D/25.4)(D:mm) 式中 β=d/D——直径比; ReD与D有关的雷诺数; A=(19000β/ReD)0.8 M‘2=2L‘2/(1-β) L1=l1/D——孔板上游端面到上游取压口的距离除以管道直径的商; L‘2=l‘2/D——孔板下游端面到下游取压口的距离除以管道直径的商(符号L‘2表示自孔板下游端面为起始位置的有关下游间距,而L2表示自孔板上游端面为起始位置的有关下游间距); D——mm; 对于角接取压法 L1=L‘2=0; 对于D和D/2取压法 L1=1,L2=0.47; 对于法兰取压法 L1=L‘2=25.4/D |
ISA 1932 喷嘴 |
C=0.9900-0.2262β4.1-(0.00175β2-0.0033β4.15)(106/ReD)1.15 式中符号同上 |
长径喷嘴 |
C=0.9965-0.00653β0.5(106/ReD)0.5 C=0.9965-0.00653(106/ReD)0.5 式中 ReD——与D有关的雷诺数; Red——与d有关的雷诺数 |
文丘里喷嘴 |
C=0.9858-0.196β4.5 式中符号同上 |
经典文丘里管 |
具有粗铸收缩段的 C=0.984 具有机械加工收缩段的 C=0.995 具有粗焊铁板收缩段的 C=0.985 |
1/4圆孔板 |
C=0.73823+0.3309β-1.1615β2+1.5084β3 式中符号同上 |
锥形入口孔板 |
C=0.734 |
偏心孔板 |
C=0.9355-1.6889β+3.0428β2-1.7989β3 |
节流件 |
可膨胀性系数ε |
孔板 |
ε=1-(0.351+0.256β4+0.93β8)[1-(P2/P1)1/k] 式中 β=d/D——直径比; P2——孔板下游侧压力; P1——孔板上游侧压力; k——等熵指数 |
喷嘴 文丘里喷嘴 经典文丘里管 矩形文丘里管 |
ε={[kτ2/k/(k-1)][(1-β4)/(1-β4τ2/k)][(1-τk-1/k)/(1-τ)]}1/2 式中 τ=P2/P1——压力比; 其余符号同上 |
1/4圆孔板 双重孔板 圆缺孔板 偏心孔板 端头孔板
|
ε=1-(0.41+0.35β4)△p /kp1 式中 △p——差压; 其余符号同上 |
锥形入口孔板 |
ε=(ε孔+ε喷)/2 式中 ε孔——孔板可膨胀性系数; ε喷——喷嘴可膨胀性系数 |
5.3 安装条件方面
要应用标准文件(GB/T 2624或ISO 5167)中的流出系数和可膨胀性系数,必须令投用的节流装置与标准节流装置达到几何相似和动力学相似,现场的安装条件是达到这两个相似的重要因素,因此对节流装置的安装应给予足够的重视。
在安装条件中节流件前后的必要直管段长度往往令选用者为难,在推理式流量计中节流式DPF需要的直管段是比较长的。另外现场阻流件类型远多于标准文件包括的,尤其是所谓组合式阻流件(两种阻流件之间间隔很短)更是难以解决,按照GB/T 2624-93(或ISO 5167-1)遇到此类情况可以采用加装流动调整器解决,但是加装流动调整器所需的直管段亦是很长的(约42D)。在此情况下有以下方案可供选择:采用直管段长度要求较短的节流装置,例如经典文丘里管或其他流量管;用实流校验方法确定现场条件下的流出系数,实流校验可以是在线的或离线的。
前面我们已谈过引压管线是节流式DPF的薄弱环节,近年来一体式节流式DPF的出现较好地解决了此问题,例如我国北方冬天蒸汽流量测量往往为引压管线的保温防冻伤脑筋,一体式DPF彻底解决了它。大多数流量计都有一体式和分离式两种类型,它们的使用各有特点,要根据现场实际情况予以选用,节流式DPF亦不例外。一体式DPF的差压变送器必须适应现场的严酷环境条件,在有些情况,如管道较强振动或强电磁干扰等还是采用分离式为好。
5.4 环境条件方面
DPF的差压变送器和流量显示仪两部分有微处理器和电子元器件,它们对环境条件的要求与一般电子仪表是一样的,在本书的其他章节中已有讨论,这里就不再重述了。
5.5 经济因素方面
经济因素包括购置费、安装费、运行费、校验费、维护费和备品备件。
(1)购置费
DPF的检测件购置费相对来说较便宜,但考虑其余两部分:差压变送器和流量显示仪整套仪表就不一定便宜了。另外,它还可能需购置一些辅助设备,如冷凝器、集气器、沉降器和隔离器等亦应估计到。
(2)安装费
分离型DPF的安装比较麻烦,主要是差压信号管路及其辅助设备的安装,对于腐蚀脏污介质之类采用隔离系统,其费用还要高些。
(3)运行费
对于大口径管道测量,能耗产生的运行费可能是笔大数目,当然如选用低压损节流装置(经典文丘里管等)亦是降低费用的办法,但是节流装置的购置费又高了,应该仔细核算一下。
(4)校验费
DPF的一个优点是可节省检测件的校验费,不但制造者,使用者亦可免去实流校验的麻烦,这点意义深远。当然DPF其余两部分校验费亦应考虑,它们相对比较方便便宜。
(5)维护费
DPF检测件维护费较少,其余两部分有一定的维护费。
(6)备品备件
DPF差压和显示仪表通用性强,对于大中型企业使用的流量仪表数量较多时可集中选用某些型号规格,以节省备品备件数量。近年推广定值节流件使节流装置摆脱对号入座的局面,检测件的购置就很方便了,可减少备品备件数量。
以上各项费用的综合计算可以比较准确地确定其经济性。
5.6 标准节流装置的选择原则
节流式DPF的首选检测件当然是标准节流装置,为了选择最合适的标准节流装置,选型时应从以下几方面考虑:
1)管径、直径比和雷诺数范围的限制条件;
2)测量精确度;
3)允许的压力损失;
4)要求的最短直管段长度;
5)对被测介质侵蚀、磨损和脏污的敏感性;
6)结构的复杂程度和价格;
7)安装的方便性;
8)使用的长期稳定性。
根据上述几方面,标准节流装置的选型原则可归纳为以下几点。
标准节流装置各种类型节流件应用的管径、直径比和雷诺数范围皆有一定的限制,在国家标准GB/T 2624-93(或国际标准ISO 5167-1)中有详细规定,例如孔板可应用于比喷嘴和文丘里喷嘴更大的管径范围,经典文丘里管各种类型之间的管径范围差别较大等等。
标准节流装置各种类型节流件的精确度在同样差压、密度测量精确度下,决定于流出系数与可膨胀性系数的不确定度。各种节流件的流出系数的不确定度差别较大,相比之下,孔板的流出系数的不确定度最小,廓形节流件(喷嘴、文丘里管)较大。廓形节流件较大的原因,是标准中给出的流出系数公式所依据的拟合的数据库质量较差。但是对廓形节流件进行个别校准,也可得到高的精确度。
在同样差压下,经典文丘里管和文丘里喷嘴的压力损失约为孔板与喷嘴的1/4-1/6。而在同样的流量和相同的β值时喷嘴的压力损失只有孔板的30%-50%。
在相同阻流件类型和直径比情况下,经典文丘里管的必要直管段长度比孔板与喷嘴的要小得多。
测量易使节流件沾污、磨损及变形的被测介质时,廓形节流件较孔板要优越得多。
在加工制造及安装等方面,孔板最为简单,喷嘴次之,文丘里喷嘴和经典文丘里管最复杂,其造价亦依次递增。管径愈大,这种差别愈显著。
孔板易取出检查节流件质量(采用可换孔板节流装置),喷嘴和文丘里管则需截断流体,拆下管道才可检查,比较麻烦。
中小口径(DN50-DN100)节流装置,取压口尺寸和取压位置的影响显著,这时采用环室取压有一定优势。
6. 安装使用注意事项
6.1 安装注意事项
节流式DPF的安装要求包括管道条件、管道连接情况、取压口结构、节流装置上下游直管段长度以及差压信号管路的敷设情况等。
安装要求必须按规范施工,偏离要求产生的测量误差,虽然有些可以修正,但大部分是无法定量确定的,因此现场的安装应严格按照标准的规定执行,否则产生的测量误差甚至无法定性确定。
关于节流装置上下游直管段长度的确定,是一个有争议的问题。由于进行此项试验的各试验者条件的差异,以及误差评定方法的不一致,试验结果存在分歧并不奇怪。国际上在80年代进行了大规模的孔板流量计试验,为ISO 5167的修订打下基础。修订的主要内容之一就是直管段长度的修订,以及流动调整器的使用等。
以下我们按测量管、节流件以及差压信号管路几方面的安装需要注意的事项分别进行简介。
⑴ 测量管及其安装
测量管是指节流件上下游直管段,包括节流件夹持环及流动调整器(如果使用时),典型的测量管如图4.21所示。测量管是节流装置的重要组成部分,其结构及几何尺寸对进入节流件流体的流动状态有重要影响,所以在标准中对测量管的结构尺寸及安装有详细的规定。对于测量管及其安装应注意以下内容:1)直管段管道内径的确定方法;2)直管段的直度和圆度;3)直管段的内表面状况;4)直管段的必要长度;5)节流件夹持环;6)流动调整器。

图4.21 测量管
直管段管道内径的确定如图4.22所示。

图4.22 管径和圆度的检验位置
具体要求如下。
1)上游 管径:D=(D1+D2+D3+…+D12)/12在①②③平面处测;
圆度:0.997 D≤D1,D2,…,D14,Dn≤1.003 D在①②③④平面处测,其中n为保险起见,在③与④平面之间,追加的测量次数。
2)下游 对管径只作一次检查:0.97 D≤D15≤1.03 D。
3)对古典文丘里管 入口圆筒形直径与D之差≤入口圆筒形直径的±1%;
入口圆筒形直径与D1,D2,D3…之差≤入口圆筒形直径的±2%;
D15≥文丘里扩散段出口端直径的90%。
用于计算节流装置直径比的管道内径D值应为上游取压口的上游0.5D长度范围内的内径平均值。由图可见,对内径确定的规定是很严格的,但是在现场由于种种原因,有时没有按照要求进行,而采取公称通径作为设计计算之用,这是不允许的。
直管段管道内表面状况对测量精确度的影响往往被忽略了。标准对管道内详细规定。在湍流状况下光滑管与粗糙管的流速分布是不一样的(见第2章)系数亦不相同。对于新安装的管道应选用符合粗糙度要求的管道,如果达不到要求采取措施,如加涂层或进行机加工,以满足之。但是仪表长期使用后,由于测量介质特性(腐蚀,粘结,结垢等)作用,内表面可能发生改变,应定期检查进行清洗维护。
直管段长度与阻流件类型及β值有关,表4.5-表4.7示有标准节流装置的必要直管段长度的规定。由表可见,标准只提供若干典型阻流件类型的数值,并且指出这些数据的试验条件为进入阻流件的流动为充分发展管流,显然这些条件在现场并非都能满足的。前面我们已谈过,在这种情况下可采用流动调整器解决。近年来,国际上对流动调整器的试验研究非常重视,取得许多重要成果,这些都将在ISO 5167新标准中得到反映。
表4.5 孔板与阻流件之间所要求的直管段长度(无流动调整器)(数值以管径D倍数表示)
直径比β |
孔 板 上 游 侧 (入口)
|
单个90o弯头 两个90o弯头 在任意平面 (S>30D)①
|
在同一平面上的两个90o弯头,S形状 (30D≥S>10D)① |
在同一平面上的两个90o弯头,S形状 (10D≥S)① |
在垂直平面上的两个90o弯头,(30D≥S≥5D)① |
在垂直平面上的两个90o弯头,(5D>S)①② |
单个90o三通 |
单个45o弯头在同一平面上的两个45o弯头,S形状(S>22D)① |
|
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
0.20 |
6 |
3 |
10 |
10 |
10 |
10 |
19 |
18 |
34 |
17 |
9 |
3 |
⑤ |
⑤ |
0.40 |
16 |
3 |
10 |
10 |
10 |
10 |
44 |
18 |
50 |
25 |
9 |
3 |
30 |
9 |
0.50 |
22 |
9 |
18 |
10 |
22 |
10 |
44 |
18 |
75 |
34 |
19 |
9 |
30 |
9 |
0.60 |
42 |
13 |
30 |
18 |
42 |
18 |
44 |
18 |
65 |
25 |
29 |
18 |
30 |
18 |
0.67 |
44 |
20 |
44 |
18 |
44 |
20 |
44 |
20 |
60 |
10 |
36 |
18 |
44 |
18 |
0.75 |
44 |
20 |
44 |
18 |
44 |
22 |
44 |
20 |
75 |
18 |
44 |
18 |
44 |
18 |
直径比β |
孔 板 上 游 侧 (入口) |
孔板下游侧(出口) |
渐缩管在1.5D到3D的长度内由2D变为D |
渐扩管在D到2D的长度内由0.5D变为D |
全孔球阀或闸阀全开 |
对称突缩管 |
温度计套管或插口③直径小于0.03D④ |
前面全部阻流件类型和密度计套管 |
|
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
0.20 |
5 |
5 |
16 |
8 |
12 |
6 |
30 |
15 |
5 |
3 |
4 |
2 |
0.40 |
5 |
5 |
16 |
8 |
12 |
6 |
30 |
15 |
5 |
3 |
6 |
3 |
0.50 |
6 |
5 |
18 |
9 |
12 |
6 |
30 |
15 |
5 |
3 |
6 |
3 |
0.60 |
9 |
5 |
22 |
11 |
14 |
7 |
30 |
15 |
5 |
3 |
7 |
3.5 |
0.67 |
12 |
6 |
27 |
14 |
18 |
9 |
30 |
15 |
5 |
3 |
7 |
3.5 |
0.75 |
22 |
11 |
38 |
19 |
24 |
12 |
30 |
15 |
5 |
3 |
8 |
4 |
①S-两个弯头分隔的间距,从上游弯头曲面部分的下游端到下游弯头曲面部分的上游端的间距。
②恶劣的安装条件,可能的话,采用流动调整器。
③对于其他阻流件,温度计套管的安装不会变更其上游的最短直管段长度。
④当A栏和B栏分别增加到20D和10D时,则可安装温度计套管的直径为0.03D到0.13D。
⑤此处无数据,用β=0.4的长度足够了。
注:1.对于β<0.2可以取β=0.2同样的长度。
2.最小直管段长度是指孔板的上下游阻流件与孔板之间的长度,该长度是从最靠近的弯头或三通的曲面部分下游末端或渐缩管和渐扩管的锥管部分下游末端测量起。
3.本表中大多数弯头其曲率半径等于1.5D,但亦可用于任意曲率半径的弯头。
4.各种阻流件中A栏的长度是指"零附加不确定度"的。
5.各种阻流件中B栏的长度是指"0.5%附加不确定度"的。
表4.6喷嘴和文丘里喷嘴所要求的直管段长度(无流动调整器)(数值以管径D倍数表示)
直径比β |
喷嘴和文丘里喷嘴上游侧(入口) |
下游侧(出口) |
单个90o弯头或三通(流体仅从一个支管流出) |
在同一平面上的两个或多个90o弯头 |
在不同平面上的两个或多个90o弯头 |
渐缩管在1.5D到3D长度由2D变为D |
渐扩管在D到2D长度内由0.5D变为D |
球阀全开 |
全孔球阀或闸阀全开 |
对称骤缩管 |
温度计套管或插孔直径小于0.03D |
温度计套管或插孔直径在0.03D和0.13D之间 |
前面阻流件(后3个除外)
|
|
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
0.20 |
10 |
6 |
14 |
7 |
34 |
17 |
5 |
|
16 |
8 |
18 |
9 |
12 |
6 |
30 |
15 |
5 |
3 |
20 |
10 |
4 |
2 |
0.25 |
10 |
6 |
14 |
7 |
34 |
17 |
5 |
|
16 |
8 |
18 |
9 |
12 |
6 |
30 |
15 |
5 |
3 |
20 |
10 |
4 |
2 |
0.30 |
10 |
6 |
16 |
8 |
34 |
17 |
5 |
|
16 |
8 |
18 |
9 |
12 |
6 |
30 |
15 |
5 |
3 |
20 |
10 |
5 |
2.5 |
0.35 |
12 |
6 |
16 |
8 |
36 |
18 |
5 |
|
16 |
8 |
18 |
9 |
12 |
6 |
30 |
15 |
5 |
3 |
20 |
10 |
5 |
2.5 |
0.40 |
14 |
7 |
18 |
9 |
36 |
18 |
5 |
|
16 |
8 |
20 |
10 |
12 |
6 |
30 |
15 |
5 |
3 |
20 |
10 |
6 |
3 |
0.45 |
14 |
7 |
18 |
9 |
38 |
19 |
5 |
|
17 |
9 |
20 |
10 |
12 |
6 |
30 |
15 |
5 |
3 |
20 |
10 |
6 |
3 |
0.50 |
14 |
7 |
20 |
10 |
40 |
20 |
6 |
5 |
18 |
9 |
22 |
11 |
12 |
6 |
30 |
15 |
5 |
3 |
20 |
10 |
6 |
3 |
0.55 |
16 |
8 |
22 |
11 |
44 |
22 |
8 |
5 |
20 |
10 |
24 |
12 |
14 |
7 |
30 |
15 |
5 |
3 |
20 |
10 |
6 |
3 |
0.60 |
18 |
9 |
26 |
13 |
48 |
24 |
9 |
5 |
22 |
11 |
26 |
13 |
14 |
7 |
30 |
15 |
5 |
3 |
20 |
10 |
7 |
3.5 |
0.65 |
22 |
11 |
32 |
16 |
54 |
27 |
11 |
6 |
25 |
13 |
28 |
14 |
16 |
8 |
30 |
15 |
5 |
3 |
20 |
10 |
7 |
3.5 |
0.70 |
28 |
14 |
36 |
18 |
62 |
31 |
14 |
7 |
30 |
15 |
32 |
16 |
20 |
10 |
30 |
15 |
5 |
3 |
20 |
10 |
7 |
3.5 |
0.75 |
36 |
18 |
42 |
21 |
70 |
35 |
22 |
11 |
38 |
19 |
36 |
18 |
24 |
12 |
30 |
15 |
5 |
3 |
20 |
10 |
8 |
4 |
0.80 |
46 |
23 |
50 |
25 |
80 |
40 |
30 |
15 |
54 |
27 |
44 |
22 |
30 |
15 |
30 |
15 |
5 |
3 |
20 |
10 |
8 |
4 |
①温度计套管或插孔的配置不变更其他阻流件需要的上游最短直管段长度。
注:1.最短直管段长度是节流件上游或下游的各种阻流件与节流件之间的数值,全部直管段长度从节流 件的上游端面测量起。
2.A栏为"零附加不确定长度"的长度值。
3.B栏为"0.5%附加不确定度"的长度值。
4.有些节流件不是全部β值都允许采用的。
表4.7 经典文丘里管所要求的直管段长度(无流动调整器)(数值以管径D倍数表示)
直径比β |
单个90o弯头① |
在同一平面上或不同平面上的两个或多个90o弯头① |
渐缩管在2.3D长度内由1.33D变为D |
渐扩管在2.5D长度内由0.67D变为D |
全孔球阀或闸阀全开 |
|
A |
B |
A |
B |
A |
B |
A |
B |
A |
B |
0.30 |
8 |
3 |
8 |
3 |
4 |
4 |
4 |
4 |
2.5 |
2.5 |
0.40 |
8 |
3 |
8 |
3 |
4 |
4 |
4 |
4 |
2.5 |
2.5 |
0.50 |
9 |
3 |
10 |
3 |
4 |
4 |
5 |
4 |
3.5 |
2.5 |
0.60 |
10 |
3 |
10 |
3 |
4 |
4 |
6 |
4 |
4.5 |
2.5 |
0.70 |
14 |
3 |
19 |
3 |
4 |
4 |
7 |
5 |
5.5 |
3.5 |
0.75 |
16 |
8 |
22 |
8 |
4 |
4 |
7 |
6 |
5.5 |
3.5 |
① 弯头的曲率半径大于或等于管径。
注:⒈最小直管段长度是指经典文丘里管上游各种阻流件与经典文丘里管之间的长度,直管段长度是从最靠近(或仅有)的弯头的曲面部分下游末端或渐缩管和渐扩管的追面部分下游末端测量起,它直至经典文丘里管上游取压口的平面处。
⒉各阻流件A栏为"零附加不确定度"的长度值。
⒊各阻流件B栏为"0.5%附加不确定度"的长度值。
⒋若温度计套管或插孔安装于经典文丘里管的上游,必须不大于0.13D并设置在文丘里管上游取压口的上游至少4D处。
⒌各种阻流件或其他干扰件(如表中所示)或密度计套管应设置于喉部取压口平面下游至少4倍喉径处,并不应影响测量的准确度。
(2)节流件的安装
节流件安装的垂直度、同轴度及与测量管之间的连接都有严格的规定。
1)垂直度 节流件应垂直于管道轴线,其偏差允许在±1o之间。
2) 同轴度 节流件应与管道或夹持环(采用时)同轴。节流件的轴线与上下游侧测量管轴线之间的距离(或称偏心率)ec与取压管轴线的平行分量ecl及垂直分量ecn应满足下式,此时流出系数C无附加不确定度
ecl≤0.0025D/(0.1+2.3β4) (4.3)
和 ecn≤0.005D/(0.1+2.3β4) (4.4)
如果ecl在式(4.5)范围内,则流出系数C的不确定度应算术相加±0.3%的附加不确定度
0.0025D/(0.1+2.3β4)≤ecl≤0.005D/(0.1+2.3β4) (4.5)
如果ec1和ecn在式(4.6)范围,则认为不符合标准文件(ISO 5167)的要求
ecl或ecn>0.005D/(0.1+2.3β4) (4.6)
由式可见,在中小口径及大β值时,安装偏心率的要求是很严格的,ec的实际检验很困难,应由各连接件的配合公差来保证。
3)节流件前后测量管的安装 离节流件2D以外,节流件与第一个上游阻流件之间的测量管,可由一段或多段不同截面的管子组成,其允许的台阶及附加不确定度如图4.23所示。在离节流件上游侧端面至少2D长度的下游测量管上,下游管道内径与上游测量管的内径平均值之差,应不超过内径平均值的±3%。若hs≤±0.3%D,则对流出系数可用参比条件下的精度。若hs≥±0.3%D,并且hs/D≤0.002×(Ls/D+0.4)/(0.1+2.3β4)和hs/D≤0.05式中β=d/D hs=D1-D 则对流出系数的精度应附加±0.2%的不确定度。

图4.23 管道台阶检验
(3)差压信号管路的安装
差压信号管路是指节流装置与差压变送器(或差压计)的导压管路。它是DPF的薄弱环节,据统计DPF的故障中引压管路最多,如堵塞、腐蚀、泄漏、冻结、假信号等等,约占全部故障率的70%,因此对差压信号管路的配置和安装应弓[起高度重视。
1)取压口 取压口一般设置在法兰、环室或夹持环上,当测量管道为水平或倾斜时取压口的安装方向如图4.24所示。它可以防止测液体时气体进入导压管或测气体时液滴或污物进入导压管。当测量管道为垂直时,取压口的位置在取压位置的平面上,方向可任意选择。不同温度条件下取压接头的安装方法如图4.25所示。

图4.24 取压口位置安装示意
图4.25 在管道上安装取压接头的方法
注:取压空边缘应整齐,为直角或稍加倒圆,无毛刺、卷刃及其他缺陷
(a)温度在426oC(800oF)以下;(b)温度在426oC(800oF)以上,而且与二次元件之间距离较大;(c)当要求满角焊时可选此方案;(d)温度在204oC(400oF)以下
2)导压管 导压管的材质应按被测介质的性质和参数确定,其内径不小于6mm,长度最好在16mm以内,各种被测介质在不同长度时导压管内径的建议值如表4.8所示。导压管应垂直或倾斜敷设,起倾斜度不小于1:12,粘度高的流体,其倾斜度应更增大。当导压管长度超过30m时,导压管应分段倾斜,并在最高点与最低点装设集气器(或排气阀)和沉淀器(或排污阀)。正负导压管应计量靠近敷设,防止两管子温度不同使信号失真,严寒地区导压管应加防冻保护,用电或蒸汽加热保温,要防止过热,导压管中流体汽化会产生假差压应予注意。
表4.8 导压管的内径和长度 mm
导压管长度/mm |
<16000 |
16000~45000 |
45000~90000 |
导压管直径/mm |
被测流体 |
水、水蒸气、干气体 |
7~9 |
10 |
13 |
湿气体 |
13 |
13 |
13 |
低、中粘度的油品 |
13 |
19 |
25 |
脏液体或气体 |
25 |
25 |
38 |
3)差压信号管路的安装 根据被测介质和节流装置与差压变送器(或差压计)的相对位置,差压信号管路有以下几种安装方式。
被测流体为清洁液体时,信号管路的安装方式如图4.26所示。

图4.26 被测流体为清洁液体是,信号管路安装示意
(a)仪表在管道下方;(b)仪表在管道上方;(c)垂直管道,被测流体为高温液体
被测流体为清洁干气体时,信号管路的安装凡是如图4.27所示。

图4.27 被测流体为清洁干气体时,信号管路安装示意
(a)仪表在管道下方;(b)仪表在管道上方;(c)垂直管道,仪表在取压口上方;(d)垂直管道,仪表在取压口下方
被测流体为水蒸气时,信号管路的安装方式如图4.28所示。

图4.28 被测流体为水蒸气时,信号管路安装示意
(a)仪表在管道下方;(b)仪表在管道上方;(c)垂直管道,仪表在取压口下方;(d)仪表在管道下方,同(a)图,仅冷凝器安装方式不同,可任意选用
被测流体为清洁湿气体时,信号管路的安装方式如图4.29所示。

图4.29 被测流体为湿气体时,信号管路安装示意(a),(b)
图4.29 被测流体为湿气体时,信号管路安装示意(c)-(f)
6.2 使用注意事项
一台DPF能否可靠地运行,达到设计精确度的要求,正确使用是很重要的。尽管流量计的设计、制造及安装等皆符合标准规定的要求,如果不注意使用问题,也可能前功尽弃,使用完全失败。以下列举若干应注意的问题。
DPF标准规定的工作条件是所谓参考工作条件(见本书第20章),这些条件在实验室里可以满足,但是在现场要完全满足比较困难,可以说,偏离标准规定要求是难免的,这时重要的是要估计偏离的程度,如果能进行适当的补偿(修正)是最好的,否则要加大估计的测量误差。
DPF检测件节流装置安装于现场严酷的工作场所,在长期运行后,无论管道或节流装置都会发生一些变化,如堵塞、结垢、磨损、腐蚀等等。检测件是依靠结构形状及尺寸保持信号的准确度,因此任何几何形状及尺寸的变化都会带来附加误差。麻烦的是,测量误差的变化并不能从信号中觉察到,因此定期检查检测件是必要的。可以根据测量介质的情况确定检查的周期,周期的长短无法作统一规定,使用者应该根据自己的具体情况确定,有的可能要摸索一段使用时间才能掌握。
在节流装置设计计算任务书中要求用户详细填写使用条件,这些条件在仪表投用后发生变化是难免的,因为设计者很难估计工艺过程的一些变量;例如压力和温度的波动。有些工艺过程刚投用与运行一段时间发生变化是正常的。另外,经常有生产产量逐渐提高的事情。以上这些都会使被测介质的物性参数发生变化。这时使用者要及时检查工艺参数,对仪表进行修正或采取一些措施,如更换节流件,调整差压变送器量程等等。