3.2 按结构形式分类
1) 标准孔板 又称同心直角边缘孔板,其轴向截面如图4.2所示。孔板是一块加工成圆形同心的具有锐利直角边缘的薄板。孔板开孔的上游侧边缘应是锐利的直角。标准孔板有三种取压方式:角接、法兰及D-D/2取压;如图4.3所示。为从两个方向的任一个方向测量流量,可采用对称孔板,节流孔的两个边缘均符合直角边缘孔板上游边缘的特性,且孔板全部厚度不超过节流孔的厚度。

图4.2 标准孔板
图4.3 孔板的三种取压方式
2) 标准喷嘴 有两种结构形式:ISA 1932喷嘴和长径喷嘴。
a. ISA 1932喷嘴(图4.4) 上游面由垂直于轴的平面、廓形为圆周的两段弧线所确定的收缩段、圆筒形喉部和凹槽组成的喷嘴。ISA 1932喷嘴的取压方式仅角接取压一种。
图4.4 ISA 1932喷嘴
b. 长径喷嘴(图4.5) 上游面由垂直于轴的平面、廓形为1/4椭圆的收缩段、圆筒形喉部和可能有的凹槽或斜角组成的喷嘴。长径喷嘴的取压方式仅D-D/2取压一种。
3) 经典文丘里管 由入口圆筒段A、圆锥收缩段B、圆筒形喉部C和圆锥扩散段E组成,如图4.6 所示。根据不同的加工方法,有以下结构形式:①具有粗铸收缩段的;②具有机械加工收缩段的;③具有铁板焊接收缩段的。不同结构形式的L1、L2、R1、R2与D、d的关系如表4.2所示。
4)文丘里喷嘴 由进口喷嘴、圆筒形喉部及扩散段组成,如图4.7所示。
5)锥形入口孔板 锥形入口孔板与标准孔板相似,相当于一块倒装的标准孔板,其结构如图4 . 8所示,取压方式为角接取压。
|
|
 表4.2 L1、L2、R1、R2与D、d关系
注 |
粗 铸 入 口 |
机械加工的入口 |
粗焊的铁板入口 |
1 |
±0.25D(100mm<D<150mm)
|
L1=0.5D±0.05D |
L1=0.5D±0.05D |
2 |
L2=1D或0.25D+250mm两个量中的小者 |
L2≥D(入口直径) |
L2≥D(入口直径) |
3 |
R1=1.375D+20% |
R1<0.25D |
R1=0,焊缝除外 |
4 |
R2=3.625d至3.8d |
R2<0.25D |
R2=0,焊缝除外 |

图4.6 经典文丘里管
 图4.7 文丘里喷嘴
 图4.8 锥形入口孔板 1一环隙;2-夹持环;3一上游端面A;4-下游端面B; 5-轴线;6-流向;7-取压口;8-孔板; X-带环隙的夹持环;Y-单独取压口
|
6)1/4圆孔板 1/4圆孔板与标准孔板相比只是孔口形状不同,它的外形轮廓由一个与轴线垂直的端面,半径r为1/4圆构成的入口截面及喷嘴出口端面组成,如图4.9所示。管径小于DN40为角接取压,大于DN40为角接取压或法兰取压。
7) 圆缺孔板 其开孔为一个圆的一部分(圆缺部分),这个圆的直径为管道直径的98%,开孔的圆弧部分的圆心应精确定位,使其与管道同心,这样可保证开孔不会被连接的管道或两端的垫片所遮盖,其结构如图4.10所示。取压方式为法兰取压和缩流取压(或称理论取压)。

图4.10 圆缺孔板
8) 偏心孔板 这种孔板的孔是偏心的,它与管道同心的圆相切,这个圆的直径等于管道直径的98%。安装这种孔板必须保证它的孔不会被法兰或垫片遮盖住,其结构如图4.11所示。它采用法兰取压和缩流取压。

图4.11 偏心孔板
1- 孔板开孔;2-管道内径;3-孔板开孔另一位置;4-孔板外径;5-孔板厚度E;
6-上游端面A;7-下游端面B;8-孔板开孔厚度e;9-孔板轴线;10-斜角F;
11-孔板开孔轴线;12-流向;13-上游边缘G;14-下游边缘H、I
9) 楔形孔板 楔形孔板的结构如图4.12所示。其检测件为V形,设计合适时节流件上下游无滞流区,不会使管道堵塞,取压方式未标准化。

图4.12 楔形流量计
1-高压取压口;2-低压取压口;3-测量管;4-楔形孔板;5-法兰
10) 整体(内藏)孔板 管径小于DN50孔板可以有多种结构形式,图4.13所示为内藏孔板结构,当管径较小时孔板入口边缘锐利度及管道糙度等对流出系数有显著影响,因此按结构几何形状及尺寸难以确定流出系数,小管径孔板一般皆需个别校准才能准确确定流出系数。

图4.13 整体(内藏)孔板
(a) 直通式;(b)U形弯管式
11)线性孔板 又称弹性加载可变面积可变压头孔板,如图4.14所示。其孔隙面积随流量大小而自动变化,曲面圆锥形塞子在差压和弹簧力的作用下来回移动,孔隙的变化使输出信号(差压或位移)与流量成线性关系,并极大地扩大范围度。

图4.14 线性孔板(GILFLO型节流装置)
1-稳定装置;2-纺锤形活塞;3-固定孔板;4-排气孔;5-标定和锁定蜗杆装置;
6-轴支撑;7-低压侧差压检出接头;8-高张力精密弹簧;9-排水孔;10-高压侧差压检出接头
12)环形孔板 环形孔板的结构如图4.15所示。它由一个被同心固定在测量管中的圆板、三脚支架和中心轴管组成,中心轴管将上下游压力传送到差压变送器。环形孔板的优点是既能疏泄管道底部的较重物质又能使管道中气体或蒸气沿管道顶部通过。

图4.15 环形孔板
13)道尔管 道尔管结构如图4.16所示。它由40o入口锥角和15o扩散管组成。流体首先碰到a上,再经短而陡的锥体,到达喉部槽两边的两个圆筒形部分,通过短的锥体后在f处,突然扩大到管道中,整个长度仅是管径的1.5-2倍,是经典文丘里管长度的17%。道尔管产生的差压比经典文丘里管大,在高差压下却有低的压损。

图4.16道尔管
14)罗洛斯管 罗洛斯管结构如图4.17所示。它由入口段、入口锥管、喉部锥管、喉部和扩散管组成。入口锥管的锥角为40o,喉部锥角为7o,扩散管锥角为5o,上游取压口采用角接取压,其取压口紧靠入口锥角处,下游取压口在喉部长度的一半,即d/4处。

图4.17 低压损(Lo-Loss)管(罗洛斯管) 图4.18 弯管流量传感器
15)弯管 弯管结构如图4.18所示。利用管道系统弯头作检测件,无附加压损及专门安装节流件是其优点,弯管取压口开在45o或22.5o处,取压口结构与标准孔板相同,两个平面内的两个取压口对准,使其能处于同一条直线上,弯管内壁应尽量保持光滑。
16)可换孔板节流装置 图4.19所示为断流取出型可换孔板节流装置。在需要检查孔板或更换孔板时,可无需拆开管道,短时间暂停管道内被测介质的流动,这时就可打开上盖,取出孔板及密封件予以检查或更换。

图4.19 可换孔板节流装置
17)临界流节流装置 临界流节流装置有两种结构形式:圆环喉部文丘里喷嘴和圆筒喉部文丘里喷嘴,如图4.20所示。
a.圆环喉部文丘里喷嘴 它由入口段、圆弧收缩段和扩散段组成。入口收缩段是一个喇叭形曲面,该曲面延伸至最小断面处(喉部),并与扩散段相切。在入口平面的上游,廓形没有规定,但在每个轴向位置上,其直径都应等于或大于喇叭形扩张部分的直径。
b.圆筒形喉部文丘里喷嘴 它由入口段、圆弧收缩段、圆筒形喉部及扩散段组成。其入口平面为入口轮廓相切且垂直于喷嘴中心线的平面。收缩段为1/4圆曲面,一端与入口平面相切,另一端与圆筒喉部相切。1/4圆曲面和圆筒喉部之间的连接应没有缺陷,连接要平滑。

图4.20 临界流节流装置
(a)圆环形喉部文丘里喷嘴
1一压力表;2-此处轮廓的表面粗糙度Ra不超过15×10-6d,其曲面偏差不能大于±0.001d
(b)圆筒形喉部文丘里喷嘴
1一此处轮廓的表面粗糙度Ra不超过15×10-6d,其喇叭形曲面及圆柱形的偏差不能大于±0.001d; 2-在圆锥扩散段轮廓的表面粗糙度Ra不超过10-4d
3.3 按用途分类
1)标准节流装置 ISO 5167或GB/T2624中所包括的节流装置称为标准节流装置,它们是标准孔板、标准喷嘴、经典文丘里管和文丘里喷嘴。在设计、制造、安装及使用方面皆遵循标准规定,可不必个别校准而使用。
2)低雷诺数节流装置 如1/4圆孔板、锥形入口孔板和双重孔板等。
3)脏污流节流装置 如圆缺孔板、偏心孔板和楔形孔板等。
4)低压损节流装置 如道尔管、罗洛斯管、弯管及环形管等。
5)小管径节流装置 如整体(内藏)孔板和一体式流量变送器等。
6)宽范围度节流装置 如线性孔板等。
7)临界流节流装置 如临界流文丘里喷嘴等。
4 节流式差压流量计的主要特点
应用最普遍的节流件标准孔板结构易于复制,简单,牢固,性能稳定可靠,使用期限长,价格低廉。
节流式DPF应用范围极广泛,至今尚无任何一类流量计可与之相比。全部单相流体,包括液、气、蒸汽皆可测量,部分混相流,如气固、气液、液固等亦可应用,一般生产过程的管径、工作状态(压力,温度)皆有产品。
检测件与差压显示仪表可分开不同生产厂生产,便于专业化形成规模经济生产,它们的结合非常灵活方便。
检测件,特别是标准型的,是全世界通用的,并得到国际标准组织的认可。对标准型检测件进行的试验研究是国际性的,其他流量计一般仅依靠个别厂家或研究群体进行,因此其研究的深度和广度不可同日而语。从时间上看,标准型检测件自20世纪30年代由国际标准化组织确定后再也没有改变,其研究资料及生产实践的积累极其丰富,它涉及的应用范围还没有一类流量计可比。
正是由于上述原因,标准型节流式DPF无需实流校准,即可投用,在流量计中亦是惟一的。
目前在各种类型中以节流式和动压头式应用最多。节流式已开发20余品种,并且仍有新品种开发出,较成熟的向标准型发展,ISO设有专门技术委员会负责此项工作。动压头式以均速管流量计为代表,近年有较快发展,它是插入式流量计的主要品种,其用量在迅速增加。
节流式DPF主要存在以下缺点:
1)测量的重复性、精确度在流量计中属于中等水平,由于众多因素的影响错综复杂,精确度难以提高。
2)范围度窄,由于仪表信号(差压)与流量为平方关系,一般范围度仅3:1-4:1。
3)现场安装条件要求较高,如需较长的直管段(指孔板,喷嘴),一般难以满足。
4)检测件与差压显示仪表之间引压管线为薄弱环节,易产生泄漏、堵塞、冻结及信号失真等故障。
5)压损大(指孔板,喷嘴)。
为了弥补上述缺点,近年仪表开发有如下一些措施。
1) 关于范围度的拓宽
节流式DPF范围度拓宽从两方面着手:1)开发线性孔板;2)采用宽量程差压变送器或多台差压变送器并用。
(2)开发定值节流件
定值节流件是指对每种通径测量管道配以有限数量的节流件,节流件的β值(孔径)则按优先数系选用,每种通径配3-5种β值。定值节流件的应用有许多优点:改变节流件应用对号入座的缺陷;节流件生产方式由小生产作业方式转变为大批量生产;对于廓形节流件(如喷嘴,文丘里管等)采用专用加工设备实现批量生产,降低生产成本,为扩大使用创造条件;给用户带来使用的方便等等。
(3)压损问题
通常节流式DPF压损大是指检测件为孔板或喷嘴等品种,其实早已开发多种低压损节流件,如各种流量管(道尔管、罗洛斯管、通用文丘里管等),它们未能大量应用的原因是结构笨重,价格高,如采用定值节流件可使生产成本大幅度下降,为广泛应用创造条件。
(4)一体化节流式DPF
把节流装置和差压变送器做成一体,省却引压管线,减少故障率,改善动态特性,方便安装使用,受到用户的欢迎。国外应用已相当普遍,据统计,日本在1996-1997年新建四家工厂400余台差压式流量计,一体化直接安装仪表约占三分之一。
(5)安装条件问题
经典文丘里管必要的直管段长度短(约5D-10D),在无长直管段场合尽量采用此类节流件,它做成定值节流件,可以降低制造成本。近年国际上为解决阻流件干扰着力研究适用的流动调整器,在精度要求较高时节流装置与流动调整器配套供应,可保证测量的精确度,但也增加了压损与维护工作量。
5 选用考虑要点
DPF应用领域极其广泛,封闭管道各种测量对象都有应用:流体方面,单相、混相、洁净、脏污;工作状态方面,常压、高压、真空、常温、高温、低温;管径方面,从几毫米到几米;流动条件方面:亚音速流、临界流、脉动流。并且在上述各方面都有大量的理论和实践的资料可供参考。
20世纪50年代以前在过程控制工程中几乎是惟一的流量计,后来各种类型流量计相继登场,打破了其一统天下的局面,几十年来它占的份额一直在下降,当然绝对用量仍在增加。应该看到,DPF三个组成部分一直在更新发展着,尤其80年代以后借助微电子技术、计算机技术、新材料及先进加工技术的发展,差压转换和流量显示计算部分有突破性进展。DPF无论可靠性,精确度及功能多样化已今非昔比。近年一些创新思路,如一体式、定值节流件等的开发更使它有中兴的感觉。
DPF的关键部分--检测件是最难更新换代的部分,现在亦有了新的发展思路,即把流量测量工作者、流体力学与计算机技术工作者三方面人员的特长结合起来可以有效地攻下这个堡垒。可以预计,DPF在流量计中仍会占据重要的位置。
选用考虑因素的五个方面为仪表性能、流体特性、安装条件、环境条件和经济因素,现分述如下。