产品介绍
刚体陀螺演示仪器GT300-3DT-ED在惯性导航系统中,陀螺仪是非常重要的敏感元件,往往对系统的性能起到决定性的作用。目前,陀螺仪的应用越来越广泛,所涉及到的教学课程日益增多,但在教学中缺乏形象生动的实验设备,陀螺原理课程理论性强,如果学习中没有相关的实验课设置,学生不容易掌握。我们设计的GT300-3DT-ED实验系统是一套三自由度刚体陀螺实验系统,利用该系统可以开设陀螺仪基本的实验,使理论和实践相结合,更好的掌握控制理论。通过实验,了解陀螺的基本特性。从而更加形象、具体、系统地掌握专业知识。同时,由于设备的便携性特点,也可以在课堂上进行演示实验,教师可以边演示边讲课,形象生动,增加学生学习的兴趣,提高教学效果。
◆ 采用三自由度刚体陀螺结构,可进行完善的陀螺实验及演示;
◆ 转子电机采用高速无刷电机,转速平稳,寿命长;
◆ 转子采用双电机结构,保障了转子的对称性,并加大了转子驱动力矩,启动速度快;
◆ 配置有专用控制器,可以完成转子转速控制,方便实验。
刚体陀螺演示仪器GT300-3DT-ED从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点, 而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运 动。更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺 的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 图1 陀螺仪结构 陀螺仪的基本部件有: 1) 陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴 高速旋转,并见其转速近似为常值); 2) 内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构); 3) 附件(是指力矩马达、信号传感器、控制器等)。
刚体陀螺演示仪器GT300-3DT-ED工作原理 陀螺仪,是一个圆形的中轴的结合体。而事实上,静止与运动的陀螺仪本身并无区别,如果 静止的陀螺仪本身平衡的话,抛除外在因素陀螺仪是可以不依靠旋转便能立定的。而如果陀 螺仪本身尺寸不平衡的话,在静止下就会造成陀螺仪模型倾斜跌倒,因此不均衡的陀螺仪必然依 靠旋转来维持平衡。陀螺仪本身与引力有关,因为引力的影响,不均衡的陀螺仪,重的一端将向下运行,而轻的 一端向上。在引力场中,重物下降的速度是需要时间的,物体坠落的速度远远慢于陀螺仪本身旋 转的速度时,将导致陀螺仪偏重点,在旋转中不断的改变陀螺仪自身的平衡,并形成一个向上旋 转的速度方向。当然,如果陀螺仪偏重点太大,陀螺仪自身的左右互作用力也将失效!。 而在旋转中,陀螺仪如果遇到外力导致,陀螺仪转轮某点受力。陀螺仪会立刻倾斜,而陀螺 仪受力点的势能如果低于陀螺仪旋转时速,这时受力点,会因为陀螺仪倾斜,在旋转的推动下, 陀螺仪受力点将从斜下角,滑向斜上角。而在向斜上角运行时,陀螺仪受力点的势能还在向下运 行。这就导致陀螺仪到达斜上角时,受力点的剩余势能将会将在位于斜上角时,势能向下推动。 而与受力点相反的直径另一端,同样具备了相应的势能,这个势能与受力点运动方向相反, 受力点向下,而它向上,且管这个点叫“联动受力点”。当联动受力点旋转180度,从斜上角到达 斜下角,这时联动受力点,将陀螺仪向上拉动。在受力点与联动受力互作用力下,陀螺仪回归平衡。
实验原理 陀螺仪被用在飞机飞行仪表的心脏地位,是由于它的两个基本特性:一为定轴性(inertia or rigidity),另一是进动性(precession),这两种特性都是建立在角动量守恒的原则下。 5.1 定轴性 当三自由度陀螺转子高速旋转后,若不受外力矩的作用,不管基座如何转动,支撑在万向支 架上的 陀螺仪自转轴指向惯性空间的方位不变,这种特性叫“定轴性”。如果我们以地球为基准, 则可以认为三自由度陀螺相对于地球运动,这种运动称为陀螺的假视运动或视在运动。视在运动 是陀螺稳定性的表现。 其惯性随以下的物理量而改变: 1)转子质量愈大,转动惯量I愈大; 2)转子旋转半径愈大,转动惯量I愈大; 3)转子旋转速度愈高,转动惯量I愈大; 5.2 进动性 在运转中的陀螺仪,如果外界施一作用或力矩在转子旋转轴上,则旋转轴并不沿施力方向运 动,而是顺着转子旋转向前90度垂直施力方向运动,此现象即是进动性。 从力学的观点近似的分析陀螺的运动时,可以把它看成是一个刚体,刚体上有一个万向支点, 而陀螺可以绕着这个支点作三个自由度的转动,所以陀螺的运动是属于刚体绕一个定点的转动运 动。更确切地说,一个绕对称轴高速旋转的飞轮转子叫陀螺。将陀螺安装在框架装置上,使陀螺 的自转轴有角转动的自由度,这种装置的总体叫做陀螺仪。 图1 陀螺仪结构 陀螺仪的基本部件有: 1) 陀螺转子(常采用同步电机、磁滞电机、三相交流电机等拖动方法来使陀螺转子绕自转轴 高速旋转,并见其转速近似为常值); 2) 内、外框架(或称内、外环,它是使陀螺自转轴获得所需角转动自由度的结构); 3) 附件(是指力矩马达、信号传感器、控制器等)。 4陀螺仪工作原理 陀螺仪,是一个圆形的中轴的结合体。而事实上,静止与运动的陀螺仪本身并无区别,如果 静止的陀螺仪本身平衡的话,抛除外在因素陀螺仪是可以不依靠旋转便能立定的。而如果陀 螺仪本身尺寸不平衡的话,在静止下就会造成陀螺仪模型倾斜跌倒,因此不均衡的陀螺仪必然依 靠旋转来维持平衡。陀螺仪本身与引力有关,因为引力的影响,不均衡的陀螺仪,重的一端将向下运行,而轻的 一端向上。在引力场中,重物下降的速度是需要时间的,物体坠落的速度远远慢于陀螺仪本身旋 转的速度时,将导致陀螺仪偏重点,在旋转中不断的改变陀螺仪自身的平衡,并形成一个向上旋 转的速度方向。当然,如果陀螺仪偏重点太大,陀螺仪自身的左右互作用力也将失效!。 而在旋转中,陀螺仪如果遇到外力导致,陀螺仪转轮某点受力。陀螺仪会立刻倾斜,而陀螺 仪受力点的势能如果低于陀螺仪旋转时速,这时受力点,会因为陀螺仪倾斜,在旋转的推动下, 陀螺仪受力点将从斜下角,滑向斜上角。而在向斜上角运行时,陀螺仪受力点的势能还在向下运 行。这就导致陀螺仪到达斜上角时,受力点的剩余势能将会将在位于斜上角时,势能向下推动。 而与受力点相反的直径另一端,同样具备了相应的势能,这个势能与受力点运动方向相反, 受力点向下,而它向上,且管这个点叫“联动受力点”。当联动受力点旋转180度,从斜上角到达 斜下角,这时联动受力点,将陀螺仪向上拉动。在受力点与联动受力互作用力下,陀螺仪回归平 衡。5 实验原理 陀螺仪被用在飞机飞行仪表的心脏地位,是由于它的两个基本特性:一为定轴性(inertia or rigidity),另一是进动性(precession),这两种特性都是建立在角动量守恒的原则下。 5.1 定轴性 当三自由度陀螺转子高速旋转后,若不受外力矩的作用,不管基座如何转动,支撑在万向支 架上的 陀螺仪自转轴指向惯性空间的方位不变,这种特性叫“定轴性”。如果我们以地球为基准, 则可以认为三自由度陀螺相对于地球运动,这种运动称为陀螺的假视运动或视在运动。视在运动 是陀螺稳定性的表现。 其惯性随以下的物理量而改变: 1)转子质量愈大,转动惯量I愈大; 2)转子旋转半径愈大,转动惯量I愈大; 3)转子旋转速度愈高,转动惯量I愈大; 5.2 进动性在运转中的陀螺仪,如果外界施一作用或力矩在转子旋转轴上,则旋转轴并不沿施力方向运 动,而是顺着转子旋转向前90度垂直施力方向运动,此现象即是进动性。