来宝网移动站

flexcell细胞牵张拉伸应力文献集锦

来宝网 2013/10/17点击2363次

Bladder


Bladder smooth muscle cells


1. Adam RM, Eaton SH, Estrada C, Nimgaonkar A, Shih SC, Smith LE, Kohane IS, Bagli D, Freeman MR. Mechanical stretch is a highly selective regulator of gene expression in human bladder smooth muscle cells. Physiol Genomics 20(1):36-44, 2004.


2. Adam RM, Roth JA, Cheng HL, Rice DC, Khoury J, Bauer SB, Peters CA, Freeman MR. Signaling through PI3K/Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells. J Urol 169(6):2388-2393, 2003.


3. Aitken KJ, Block G, Lorenzo A, Herz D, Sabha N, Dessouki O, Fung F, Szybowska M, Craig L, Bagli DJ. Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am J Pathol 169(2):459-470, 2006.
 

4. Aitken KJ, Tolg C, Panchal T, Leslie B, Yu J, Elkelini M, Sabha N, Tse DJ, Lorenzo AJ, Hassouna M, B?gli DJ. Mammalian target of rapamycin (mTOR) induces proliferation and de-differentiation responses to three coordinate pathophysiologic stimuli (mechanical strain, hypoxia, and extracellular matrix remodeling) in rat bladder smooth muscle. Am J Pathol 176(1):304-319, 2010. Epub 2009 Dec 17.


5. Chaqour B, Yang R, Sha Q. Mechanical stretch modulates the promoter activity of the profibrotic factor CCN2 through increased actin polymerization and NF-κB activation. J Biol Chem 281(29):20608-20622, 2006.


6. Estrada CR, Adam RM, Eaton SH, B?gli DJ, Freeman MR. Inhibition of EGFR signaling abrogates smooth muscle proliferation resulting from sustained distension of the urinary bladder. Lab Invest 86(12):1293-1302, 2006.


7. Galvin DJ, Watson RW, Gillespie JI, Brady H, Fitzpatrick JM. Mechanical stretch regulates cell survival in human bladder smooth muscle cells in vitro. Am J Physiol Renal Physiol 283(6):F1192-F1199, 2002.


8. Halachmi S, Aitken KJ, Szybowska M, Sabha N, Dessouki S, Lorenzo A, Tse D, Bagli DJ. Role of signal transducer and activator of transcription 3 (STAT3) in stretch injury to bladder smooth muscle cells. Cell Tissue Res 326(1):149-158, 2006.


9. Hubschmid U, Leong-Morgenthaler PM, Basset-Dardare A, Ruault S, Frey P. In vitro growth of human urinary tract smooth muscle cells on laminin and collagen type I-coated membranes under static and dynamic conditions. Tissue Engineering 11(1-2):161-171, 2005.


10. Kushida N, Kabuyama Y, Yamaguchi O, Homma Y. Essential role for extracellular Ca2+ in JNK activation by mechanical stretch in bladder smooth muscle cells. Am J Physiol Cell Physiol 281(4):C1165-C1172, 2001.


11. Nguyen HT, Adam RM, Bride SH, Park JM, Peters CA, Freeman MR. Cyclic stretch activates p38 SAPK2-, ErbB2-, and AT1-dependent signaling in bladder smooth muscle cells. Am J Physiol Cell Physiol 279(4):C1155-C1167, 2000.


12. Orsola A, Adam RM, Peters CA, Freeman MR. The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells. Urology 59(5):779-783, 2002.
 


13. Orsola A, Estrada CR, Nguyen HT, Retik AB, Freeman MR, Peters CA, Adam RM. Growth and stretch response of human exstrophy bladder smooth muscle cells: molecular evidence of normal intrinsic function. BJU Int 95(1):144-148, 2005.
 

14. Park JM, Adam RM, Peters CA, Guthrie PD, Sun Z, Klagsbrun M, Freeman MR. AP-1 mediates stretch-induced expression of HB-EGF in bladder smooth muscle cells. Am J Physiol Cell Physiol 277:C294-C301, 1999.
 

15. Park JM, Borer JG, Freeman MR, Peters CA. Stretch activates heparin-binding EGF-like growth factor expression in bladder smooth muscle cells. Am J Physiol Cell Physiol 275:C1247-C1254, 1998.
 

16. Park JM, Yang T, Arend LJ, Schnermann JB, Peters CA, Freeman MR, Briggs JP. Obstruction stimulates COX-2 expression in bladder smooth muscle cells via increased mechanical stretch. Am J Physiol Renal Physiol 276:F129-F136, 1999.
 

17. Persson K, Sando JJ, Tuttle JB, Steers WD. Protein kinase C in cyclic stretch-induced nerve growth factor production by urinary tract smooth muscle cells. Am J Physiol Cell Physiol 269:C1018-C1024, 1995.
 

18. Steers WD, Broder SR, Persson K, Bruns DE, Ferguson JE 2nd, Bruns ME, Tuttle JB. Mechanical stretch increases secretion of parathyroid hormone-related protein by cultured bladder smooth muscle cells. J Urol 160(3 Pt 1):908-912, 1998.
 

19. Upadhyay J, Aitken KJ, Damdar C, Bolduc S, Bagli DJ. Integrins expressed with bladder extracellular matrix after stretch injury in vivo mediate bladder smooth muscle cell growth in vitro. J Urol 169(2):750-755, 2003.
 

20. Yang R, Amir J, Liu H, Chaqour B. Mechanical strain activates a program of genes functionally involved in paracrine signaling of angiogenesis. Physiol Genomics 36(1):1-14, 2008. Epub 2008 Oct 14.
 

21. Yu G, Bo S, Xiyu J, Enqing X. Effect of bladder outlet obstruction on detrusor smooth muscle cell: an in vitro study. Journal of Surgical Research 114(2):202-209, 2003.
 

22. Zhou D, Herrick DJ, Rosenbloom J, Chaqour B. Cyr61 mediates the expression of VEGF, αv-integrin, and α-actin genes through cytoskeletally based mechanotransduction mechanisms in bladder smooth muscle cells. J Appl Physiol 98(6):2344-2354, 2005.
Urothelial & uroepithelial cells
 

23. Jerde TJ, Mellon WS, Bjorling DE, Nakada SY. Evaluation of urothelial stretch-induced cyclooxygenase-2 expression in novel human cell culture and porcine in vivo ureteral obstruction models. J Pharmacol Exp Ther 317(3):965-972, 2006.
 

24. Jerde TJ, Mellon WS, Bjorling DE, Checura CM, Owusu-Ofori K, Parrish JJ, Nakada SY. Stretch induction of cyclooxygenase-2 expression in human urothelial cells is calcium- and protein kinase C zeta-dependent. Mol Pharmacol 73(1):18-26, 2008. Erratum in: Mol Pharmacol 74(2):539, 2008.
 

25. Sun Y, Chai TC. Effects of dimethyl sulphoxide and heparin on stretch-activated ATP release by bladder urothelial cells from patients with interstitial cystitis. BJU Int 90(4):381-385, 2002.
 

26. Sun Y, Chai TC. Up-regulation of P2X3 receptor during stretch of bladder urothelial cells from patients with interstitial cystitis. J Urol 171(1):448-452, 2004.
 

27. Sun Y, Keay S, De Deyne PG, Chai TC. Augmented stretch activated adenosine triphosphate release from bladder uroepithelial cells in patients with interstitial cystitis. Journal of Urology 166(5):1951-1956, 2001.
 

28. Sun Y, Keay S, DeDeyne P, Chai T. Stretch-activated release of adenosine triphosphate by bladder uroepithelia is augmented in interstitial cystitis [abstract]. Urology 57(6 Suppl 1):131, 2001.
 

29. Sun Y, MaLossi J, Jacobs SC, Chai TC. Effect of doxazosin on stretch-activated adenosine triphosphate release in bladder urothelial cells from patients with benign prostatic hyperplasia. Urology 60(2):351-356, 2002.

Bone
1. Aguirre JI, Plotkin LI, Gortazar AR, Millan MM, O’Brien CA, Manolagas SC, Bellido T. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem 282(35):25501–25508, 2007.


2. Bellido T, Plotkin LI. Detection of apoptosis of bone cells in vitro. Methods in Molecular Biology, Vol. 455: Osteoporosis: Methods and Protocols. Edited by Westendorf JJ. Humana Press: Totowa, 51-75, 2008.


3. Bhatt KA, Chang EI, Warren SM, Lin SE, Bastidas N, Ghali S, Thibboneir A, Capla JM, McCarthy JG, Gurtner GC. Uniaxial mechanical strain: an in vitro correlate to distraction osteogenesis. J Surg Res 143(2):329-36, 2007. Epub 2007 Oct 22.


4. Boutahar N, Guignandon A, Vico L, Lafage-Proust MH. Mechanical strain on osteoblasts activates autophosphorylation of focal adhesion kinase and proline-rich tyrosine kinase 2 tyrosine sites involved in ERK activation. J Biol Chem 279(29):30588-30599, 2004.


5. Buckley MJ, Banes AJ, Jordan RD. The effects of mechanical strain on osteoblasts in vitro. J Oral Maxillofac Surg 48(3):276-282, 1990.
 

6. Buckley MJ, Banes AJ, Levin LG, Sumpio BE, Sato M, Jordan R, Gilbert J, Link GW, Tran Son Tay R. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner 4(3):225-236, 1988.
 

7. Calvalho RS, Bumann A, Schwarzer C, Scott E, Yen EH. A molecular mechanism of integrin regulation from bone cells stimulated by orthodontic forces. Eur J Orthod 18(3):227-235, 1996.
 

8. Carvalho RS, Bumann A, Schwarzer C, Scott E, Yen HK. A molecular mechanism of integrin regulation from bone cells stimulated by orthodontic forces. The European Journal of Orthodontics 18(1):227-235, 1996.
 

9. Carvalho RS, Scott JE, Suga DM, Yen EH. Stimulation of signal transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone. J Bone Miner Res 9(7):999-1011, 1994.
 

10. Carvalho RS, Scott JE, Yen EH. The effects of mechanical stimulation on the distribution of β1 integrin and expression of β1-integrin mRNA in TE-85 human osteosarcoma cells. Arch Oral Biol 40(3):257-264, 1995.
 

11. Case N, Ma M, Sen B, Xie Z, Gross TS, Rubin J. β-catenin levels influence rapid mechanical responses in osteoblasts. J Biol Chem 283(43):29196-29205, 2008. Epub 2008 Aug 22.
 

12. Chen X, Macica CM, Ng KW, Broadus AE. Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Miner Res 20(8):1454-61, 2005.
 

13. Cillo JE Jr, Gassner R, Koepsel RR, Buckley MJ. Growth factor and cytokine gene expression in mechanically strained human osteoblast-like cells: implications for distraction osteogenesis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 90(2):147-154, 2000.
 

14. Duncan RL, Hruska KA. Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol Renal Physiol 267:F909-F916, 1994.
 

15. Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 207(2):454-460, 2006.
 

16. Faure C, Linossier MT, Malaval L, Lafage-Proust MH, Peyroche S, Vico L, Guignandon A. Mechanical signals modulated vascular endothelial growth factor-A (VEGF-A) alternative splicing in osteoblastic cells through actin polymerisation. Bone 42(6):1092-1101, 2008. Epub 2008 Feb 29.
 

17. Faure C, Vico L, Tracqui P, Laroche N, Vanden-Bossche A, Linossier MT, Rattner A, Guignandon A. Functionalization of matrices by cyclically stretched osteoblasts through matrix targeting of VEGF. Biomaterials 31(25):6477-6484, 2010. Epub 2010 Jun 11.
 

18. Geng WD, Boskovic G, Fultz ME, Li C, Niles RM, Ohno S, Wright GL. Regulation of expression and activity of four PKC isozymes in confluent and mechanically stimulated UMR-108 osteoblastic cells. J Cell Physiol 189(2):216-228, 2001.
 

19. Granet C, Boutahar N, Vico L, Alexandre C, Lafage-Proust MH. MAPK and SRC-kinases control EGR-1 and NF-κB inductions by changes in mechanical environment in osteoblasts. Biochem Biophys Res Commun 284(3):622-631, 2001.
 

20. Granet C, Vico AG, Alexandre C, Lafage-Proust MH. MAP and src kinases control the induction of AP-1 members in response to changes in mechanical environment in osteoblastic cells. Cellular Signaling 14(8):679-688, 2002.
 

21. Grimston SK, Screen J, Haskell JH, Chung DJ, Brodt MD, Silva MJ, Civitelli R. Role of connexin43 in osteoblast response to physical load. Ann N Y Acad Sci 1068:214-224, 2006.
 

22. Guignandon A, Akhouayri O, Usson Y, Rattner A, Laroche N, Lafage-Proust MH, Alexandre C, Vico L. Focal contact clustering in osteoblastic cells under mechanical stresses: microgravity and cyclic deformation. Cell Commun Adhes 10(2):69-83, 2003.
 

23. Guignandon A, Boutahar N, Rattner A, Vico L, Lafage-Proust MH. Cyclic strain promotes shuttling of PYK2/Hic-5 complex from focal contacts in osteoblast-like cells. Biochem Biophys Res Commun 343(2):407-14, 2006.
 

24. Hara F, Fukuda K, Asada S, Matsukawa M, Hamanishi C. Cyclic tensile stretch inhibition of nitric oxide release from osteoblast-like cells is both G protein and actin-dependent. Journal of Orthopaedic Research 19(1):126-131, 2001.
 

25. Hara F, Fukuda K, Ueno M, Hamanishi C, Tanaka S. Pertussis toxin-sensitive G proteins as mediators of stretch-induced decrease in nitric-oxide release of osteoblast-like cells. J Orthop Res 17(4):593-597, 1999.
 

26. Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ. TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J Bone Miner Res 20(7):1103-1113, 2005.
 

27. Ho AM, Marker PC, Peng H, Quintero AJ, Kingsley DM, Huard J. Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation. BMC Dev Biol 8:35, 2008.
 


28. Jansen JH, Weyts FA, Westbroek I, Jahr H, Chiba H, Pols HA, Verhaar JA, van Leeuwen JP, Weinans H. Stretch-induced phosphorylation of ERK1/2 depends on differentiation stage of osteoblasts. Journal of Cellular Biochemistry 93:542–551, 2004.
29. Kim DW, Lee HJ, Karmin JA, Lee SE, Chang SS, Tolchin B, Lin S, Cho SK, Kwon A, Ahn JM, Lee FY. Mechanical loading differentially regulates membrane-bound and soluble RANKL availability in MC3T3-E1 cells. Ann N Y Acad Sci 1068:568-72., 2006.
30. Knoll B, McCarthy TL, Centrella M, Shin J. Strain-dependent control of transforming growth factor- β function in osteoblasts in an in vitro model: biochemical events associated with distraction osteogenesis. Plastic & Reconstructive Surgery 116(1):224-233, 2005.
31. Li L, Chen M, Deng L, Mao Y, Wu W, Chang M, Chen H. The effect of mechanical stimulation on the expression of α2, β1, β3 integrins and the proliferation, synthetic function in rat osteoblasts. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 20(2):187-192, 2003.
32. Li L, Deng L, Chen M, Wu W, Mao Y, Chen H. The effect of mechanical stimulation on the proliferation and synthetic function of osteoblasts from osteoporotic rat. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 21(3):341-346, 349, 2004.
33. Li X, Zhang XL, Shen G, Tang GH. Effects of tensile forces on serum deprivation-induced osteoblast apoptosis: expression analysis of caspases, Bcl-2, and Bax. Chin Med J (Engl) 125(14):2568-2573, 2012.
34. Li Y, Tang L, Duan Y, Ding Y. Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells. BMC Res Notes 3:309, 2010.
35. Liegibel UM, Sommer U, Tomakidi P, Hilscher U, Van Den Heuvel L, Pirzer R, Hillmeier J, Nawroth P, Kasperk C. Concerted action of androgens and mechanical strain shifts bone metabolism from high turnover into an osteoanabolic mode. J Exp Med 196(10):1387-1392, 2002.
36. Lima F, Vico L, Lafage-Proust MH, van der Saag P, Alexandre C, Thomas T. Interactions between estrogen and mechanical strain effects on U2OS human osteosarcoma cells are not influenced by estrogen receptor type. Bone 35(5):1127-1135, 2004.
37. Liu X, Zhang X, Luo ZP. Strain-related collagen gene expression in human osteoblast-like cells. Cell Tissue Res 322(2):331-334, 2005.
38. Narutomi M, Nishiura T, Sakai T, Abe K, Ishikawa H. Cyclic mechanical strain induces interleukin-6 expression via prostaglandin E2 production by cyclooxygenase-2 in MC3T3-E1 osteoblast-like cells. J Oral Biosci 49(1):65-73, 2007.
39. Miyauchi A, Gotoh M, Kamioka H, Notoya K, Sekiya H, Takagi Y, Yoshimoto Y, Ishikawa H, Chihara K, Takano-Yamamoto T, Fujita T, Mikuni-Takagaki Y. αVβ3 integrin ligands enhance volume-sensitive calcium influx in mechanically stretched osteocytes. J Bone Miner Metab 24(6):498-504, 2006.
40. Motokawa M, Kaku M, Tohma Y, Kawata T, Fujita T, Kohno S, Tsutsui K, Ohtani J, Tenjo K, Shigekawa M, Kamada H, Tanne K. Effects of cyclic tensile forces on the expression of vascular endothelial growth factor (VEGF) and macrophage-colony-stimulating factor (M-CSF) in murine osteoblastic MC3T3-E1 cells. J Dent Res 84(5):422-427, 2005.
FLEXCELL? INTERNATIONAL CORPORATION
6
41. Myers KA, Rattner JB, Shrive NG, Hart DA. Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochem Biophys Res Commun 364(2):214-219, 2007. Epub 2007 Oct 4.
42. Plotkin LI, Mathov I, Aguirre JI, Parfitt AM, Manolagas SC, Bellido T. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol Cell Physiol 289(3):C633-643, 2005.
43. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.
44. Qi J, Chi L, Wang J, Sumanasinghe R, Wall M, Tsuzaki M, Banes AJ. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-κB pathways dependent. Exp Cell Res 315(11):1990-2000, 2009. Epub 2009 Feb 23.
45. Rath B, Springorum HR, Deschner J, Luring C, Tingart M, Grifka J, Schaumburger J, Grassel S. Regulation of gene expression in articular cells is influenced by biomechanicalloading. Central European Journal of Medicine 2012, doi: 10.2478/s11536-012-0008-x.
46. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ, Cullen DM, Zhao W, Li C, Kharode Y, Sauter L, Babij P, Brown EL, Hill AA, Akhter MP, Johnson ML, Recker RR, Komm BS, Bex FJ. Wnt/β-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 281(42):31720-31728, 2006.
47. Sano S, Okawa A, Nakajima A, Tahara M, Fujita K, Wada Y, Yamazaki M, Moriya H, Sasho T. Identification of Pip4k2β as a mechanical stimulus responsive gene and its expression during musculoskeletal tissue healing. Cell Tissue Res 323(2):245-252, 2006.
48. Siddhivarn C, Banes A, Champagne C, Riche EL, Weerapradist W, Offenbacher S. Prostaglandin D2 pathway and peroxisome proliferator-activated receptor γ-1 expression are induced by mechanical loading in an osteoblastic cell line. J Periodontal Res 41(2):92-100, 2006.
49. Siddhivarn C, Banes A, Champagne C, Riche EL, Weerapradist W, Offenbacher S. Mechanical loading and Δ12prostaglandin J2 induce bone morphogenetic protein-2, peroxisome proliferator-activated receptor γ-1, and bone nodule formation in an osteoblastic cell line. J Periodontal Res 42(5):383-392, 2007.
50. Stanford CM, Stevens JW, Brand RA. Cellular deformation reversibly depresses RT-PCR detectable levels of bone-related mRNA. Journal of Biomechanics 28(12):1419-1427, 1995.
51. Sun Z, Tee BC. Molecular variations related to the regional differences in periosteal growth at the mandibular ramus. Anat Rec (Hoboken) 294(1):79-87, 2011. doi: 10.1002/ar.21293. Epub 2010 Nov 16.
52. Suzuki N, Yoshimura Y, Deyama Y, Suzuki K, Kitagawa Y. Mechanical stress directly suppresses osteoclast differentiation in RAW264.7 cells. Int J Mol Med 21(3):291-296, 2008.
53. Tang L, Lin Z, Li YM. Effects of different magnitudes of mechanical strain on osteoblasts in vitro. Biochem Biophys Res Commun 344(1):122-128, 2006. Epub 2006 Apr 17.
54. Thompson MS, Epari DR, Bieler F, Duda GN. In vitro models for bone mechanobiology: applications in bone regeneration and tissue engineering. Proc Inst Mech Eng H 224(12):1533-1541, 2010.
FLEXCELL? INTERNATIONAL CORPORATION
7
55. Toyoshita Y, Iida S, Koshino H, Hirai T, Yokoyama A. CYP24 promoter activity is affected by mechanical stress and mitogen-activated protein kinase in MG63 osteoblast-like cells. Nihon Hotetsu Shika Gakkai Zasshi 52(2):171-174, 2008.
56. Vadiakas GP, Banes AJ. Verapamil decreases cyclic load-induced calcium incorporation in ROS 17/2.8 osteosarcoma cell cultures. Matrix 12(6):439-447 , 1992.
57. Visconti LA, Yen EH, Johnson RB. Effect of strain on bone nodule formation by rat osteogenic cells in vitro. Archives of Oral Biology 49(6):485-492, 2004
58. Xiao LW, Yang M, Dong J, Xie H, Sui GL, He YL, Lei JX, Liao EY, Yuan X. Stretch-inducible expression of connective tissue growth factor (CTGF) in human osteoblasts-like cells is mediated by PI3K-JNK pathway. Cell Physiol Biochem 28(2):297-304, 2011. Epub 2011 Aug 16.
59. Yamamoto N, Fukuda K, Matsushita T, Matsukawa M, Hara F, Hamanishi C. Cyclic tensile stretch stimulates the release of reactive oxygen species from osteoblast-like cells. Calcif Tissue Int 76(6):433-8, 2005.
60. Zhang C, Liang G, Zhang Y, Hu Y. Response to dynamic strain in human periosteal cells grown in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 23(3):546-550, 2006.


61. Zhu J, Zhang X, Wang C, Peng X, Zhang X. Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int J Mol Sci 9(12):2322-2332, 2008. Epub 2008 Nov 26.
62. Ziambaras K, Lecanda F, Steinberg TH, Civitelli R. Cyclic stretch enhances gap junctional communication between osteoblastic cells. J Bone Miner Res 13(2):218-28, 1998.
Cardiovasculature
Cardiomyocytes and fibroblasts
1. Adam RM, Roth JA, Cheng HL, Rice DC, Khoury J, Bauer SB, Peters CA, Freeman MR. Signaling through PI3K/Akt mediates stretch and PDGF-BB-dependent DNA synthesis in bladder smooth muscle cells. J Urol 169(6):2388-2393, 2003.
2. Alibin CP, Kopilas MA, Anderson HD. Suppression of cardiac myocyte hypertrophy by conjugated linoleic acid: role of peroxisome proliferator-activated receptors α and γ. J Biol Chem 283(16):10707-10715, 2008. Epub 2008 Feb 18.
3. Anderson HD, Wang F, Gardner DG. Role of the epidermal growth factor receptor in signaling strain-dependent activation of the brain natriuretic peptide gene. J Biol Chem 279(10):9287-9297, 2004.
4. Baba HA, Stypmann J, Grabellus F, Kirchhof P, Sokoll A, Schafers M, Takeda A, Wilhelm MJ, Scheld HH, Takeda N, Breithardt G, Levkau B. Dynamic regulation of MEK/Erks and Akt/GSK-3β in human end-stage heart failure after left ventricular mechanical support: myocardial mechanotransduction-sensitivity as a possible molecular mechanism. Cardiovascular Research 59(2):390-399, 2003.
5. Boateng SY, Belin RJ, Geenen DL, Margulies KB, Martin JL, Hoshijima M, de Tombe PP, Russell B. Cardiac dysfunction and heart failure are associated with abnormalities in the subcellular distribution and amounts of oligomeric muscle LIM protein. Am J Physiol Heart Circ Physiol 292(1):H259-H269, 2007.
6. Boateng SY, Lateef SS, Mosley W, Hartman TJ, Hanley L, Russell B. RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes. Am J Physiol Cell Physiol 288(1):C30-C38, 2005.
7. Boateng SY, Senyo SE, Qi L, Goldspink PH, Russell B. Myocyte remodeling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein. J Mol Cell Cardiol 47(4):426-35, 2009. Epub 2009 Apr 17.
8. Boerma M, van der Wees CG, Vrieling H, Svensson JP, Wondergem J, van der Laarse A, Mullenders LH, van Zeeland AA. Microarray analysis of gene expression profiles of cardiac myocytes and fibroblasts after mechanical stress, ionising or ultraviolet radiation. BMC Genomics 6(1):6, 2005.
9. Blaauw E, van Nieuwenhoven FA, Willemsen P, Delhaas T, Prinzen FW, Snoeckx LH, van Bilsen M, van der Vusse GJ. Stretch-induced hypertrophy of isolated adult rabbit cardiomyocytes. Am J Physiol Heart Circ Physiol 299(3):H780-H787, 2010. Epub 2010 Jul 16.
10. Cao L, Gardner DG. Natriuretic peptides inhibit DNA synthesis in cardiac fibroblasts. Hypertension 25(2):227-234, 1995.
11. Choudhary R, Palm-Leis A, Scott RC 3rd, Guleria RS, Rachut E, Baker KM, Pan J. All-trans retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system. Am J Physiol Heart Circ Physiol 294(2):H633-H644, 2008. Epub 2007 Dec 21.
12. de Jonge HW, Dekkers DH, Tilly BC, Lamers JM. Cyclic stretch and endothelin-1 mediated activation of chloride channels in cultured neonatal rat ventricular myocytes. Clin Sci (Lond) 103 Suppl 48:148S-151S, 2002.
13. Espinoza-Derout J, Wagner M, Shahmiri K, Mascareno E, Chaqour B, Siddiqui MA. Pivotal role of cardiac lineage protein-1 (CLP-1) in transcriptional elongation factor P-TEFb complex formation in cardiac hypertrophy. Cardiovasc Res 75(1):129-138, 2007. Epub 2007 Mar 28.
14. F?ldes G, Mioulane M, Wright JS, Liu AQ, Novak P, Merkely B, Gorelik J, Schneider MD, Ali NN, Harding SE. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy? J Mol Cell Cardiol 50(2):367-376, 2011. Epub 2010 Nov 1.
15. Funari BJ, Witt MR, Clause KM, Keller BB, Tobita K, Ralphe JC. The impact of energy substrate on contractile performance in a neonatal rat engineered cardiac tissue model [abstract]. Pediatric Academic Societies Annual Meeting, Toronto, Canada, 2007.
16. Gardner DG, Newman ED, Nakamura KK, Nguyen KP. Endothelin increases the synthesis and secretion of atrial natriuretic peptide in neonatal rat cardiocytes. Am J Physiol Endocrinol Metab 261:E177-E182, 1991.
17. Gupta S, Sen S. Myotrophin-kB DNA interaction in the initiation process of cardiac hypertrophy. Biochimica et Biophysica Acta (BBA)/Molecular Cell Research 1589(3):247-260, 2002.
18. Harada M, Saito Y, Nakagawa O, Miyamoto Y, Ishikawa M, Kuwahara K, Ogawa E, Nakayama M, Kamitani S, Hamanaka I, Kajiyama N, Masuda I, Itoh H, Tanaka I, Nakao K. Role of cardiac nonmyocytes in cyclic mechanical stretch-induced myocyte hypertrophy. Heart Vessels Suppl 12:198-200, 1997.
19. Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, Kempf T, Hilfiker-Kleiner D, Caroni P, Kraft T, Kaiser RA, Molkentin JD, Drexler H, Wollert KC. Attenuation of cardiac remodeling after myocardial infarction by muscle
FLEXCELL? INTERNATIONAL CORPORATION
9
LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci U S A 102(5):1655-1660, 2005.
20. Hilfiker-Kleiner D, Kaminski K, Kaminska A, Fuchs M, Klein G, Podewski E, Grote K, Kiian I, Wollert KC, Hilfiker A, Drexler H. Regulation of proangiogenic factor CCN1 in cardiac muscle: impact of ischemia, pressure overload, and neurohumoral activation. Circulation 109(18):2227-2233, 2004.
21. Husse B, Sopart A, Isenberg G. Cyclical mechanical stretch-induced apoptosis in myocytes from young rats but necrosis in myocytes from old rats. Am J Physiol Heart Circ Physiol 285:1521-1527, 2003.
22. Koitabashi N, Arai M, Kogure S, Niwano K, Watanabe A, Aoki Y, Maeno T, Nishida T, Kubota S, Takigawa M, Kurabayashi M. Increased connective tissue growth factor relative to brain natriuretic peptide as a determinant of myocardial fibrosis. Hypertension 49(5):1120-1127, 2007. Epub 2007 Mar 19.
23. Lal H, Verma SK, Golden HB, Foster DM, Smith M, Dostal DE. Stretch-induced regulation of angiotensinogen gene expression in cardiac myocytes and fibroblasts: opposing roles of JNK1/2 and p38α MAP kinases. J Mol Cell Cardiol 45(6):770-778, 2008. Epub 2008 Sep 26.
24. Lal H, Verma SK, Smith M, Guleria RS, Lu G, Foster DM, Dostal DE. Stretch-induced MAP kinase activation in cardiac myocytes: differential regulation through β1-integrin and focal adhesion kinase. J Mol Cell Cardiol 43(2):137-147, 2007. Epub 2007 May 24.
25. Lateef SS, Boateng S, Ahluwalia N, Hartman TJ, Russell B, Hanley L. Three-dimensional chemical structures by protein functionalized micron-sized beads bound to polylysine-coated silicone surfaces. J Biomed Mater Res A 72(4):373-380, 2005.
26. Lateef SS, Boateng S, Hartman TJ, Crot CA, Russell B, Hanley L. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion. Biomaterials 23(15):3159-3168, 2002.
27. Liang F, Atakilit A, Gardner DG. Integrin dependence of brain natriuretic peptide gene promoter activation by mechanical strain. J Biol Chem 275(27):20355-20360, 2000.
28. Liang F, Gardner DG. Autocrine/paracrine determinants of strain-activated brain natriuretic peptide gene expression in cultured cardiac myocytes. J Biol Chem 273(23):14612-14619, 1998.
29. Liang F, Gardner DG. Mechanical strain activates BNP gene transcription through a p38/NF-κB-dependent mechanism. J Clin Invest 104(11):1603-1612, 1999.
30. Liang F, Kovacic-Milivojevic B, Chen S, Cui J, Roediger F, Intengan H, Gardner DG. Signaling mechanisms underlying strain-dependent brain natriuretic peptide gene transcription. Can J Physiol Pharmacol 79(8):640-645, 2001.
31. Liang F, Lu S, Gardner DG. Endothelin-dependent and -independent components of strain-activated brain natriuretic peptide gene transcription require extracellular signal regulated kinase and p38 mitogen-activated protein kinase. Hypertension 35(1 Pt 2):188-192, 2000.
32. Liang F, Wu J, Garami M, Gardner DG. Mechanical strain increases expression of the brain natriuretic peptide gene in rat cardiac myocytes. J Biol Chem 272(44):28050-28056, 1997.
FLEXCELL? INTERNATIONAL CORPORATION
10
33. Liang YJ, Lai LP, Wang BW, Juang SJ, Chang CM, Leu JG, Shyu KG. Mechanical stress enhances serotonin 2B receptor modulating brain natriuretic peptide through nuclear factor-κB in cardiomyocytes. Cardiovasc Res 72(2):303-12, 2006.
34. Lindahl GE, Chambers RC, Papakrivopoulou J, Dawson SJ, Jacobsen MC, Bishop JE, Laurent GJ. Activation of fibroblast procollagen α1(I) transcription by mechanical strain is transforming growth factor-β-dependent and involves increased binding of CCAAT-binding factor (CBF/NF-Y) at the proximal promoter. J Biol Chem 277(8):6153-6161, 2002.
35. Malhotra R, D’Souza KM, Staron ML, Birukov KG, Bodi I, Akhter SA. G alpha(q)-mediated activation of GRK2 by mechanical stretch in cardiac myocytes: the role of protein kinase C. J Biol Chem 285(18):13748-13760, 2010. Epub 2010 Mar 1.
36. Marin TM, Clemente CF, Santos AM, Picardi PK, Pascoal VD, Lopes-Cendes I, Saad MJ, Franchini KG. Shp2 negatively regulates growth in cardiomyocytes by controlling focal adhesion kinase/Src and mTOR pathways. Circ Res 103(8):813-824, 2008. Epub 2008 Aug 28.
37. Miller CE, Donlon KJ, Toia L, Wong CL, Chess PR. Cyclic strain induces proliferation of cultured embryonic heart cells. In Vitro Cell Dev Biol Anim 36(10):633-639, 2000.
38. Nadruz W Jr, Corat MA, Marin TM, Guimaraes Pereira GA, Franchini KG. Focal adhesion kinase mediates MEF2 and c-Jun activation by stretch: role in the activation of the cardiac hypertrophic genetic program. Cardiovasc Res 68(1):87-97, 2005.
39. Palm-Leis A, Singh US, Herbelin BS, Olsovsky GD, Baker KM, Pan J. Mitogen-activated protein kinases and mitogen-activated protein kinase phosphatases mediate the inhibitory effects of all-trans retinoic acid on the hypertrophic growth of cardiomyocytes. J Biol Chem 279(52):54905-54917, 2004.
40. Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 202(2):536-553, 2005.
41. Persoon-Rothert M, van der Wees KG, van der Laarse A. Mechanical overload-induced apoptosis: a study in cultured neonatal ventricular myocytes and fibroblasts. Mol Cell Biochem 241(1-2):115-24, 2002.
42. Pikkarainen S, Tokola H, Kerkela R, Ilves M, Makinen M, Orzechowski HD, Paul M, Vuolteenaho O, Ruskoaho H. Inverse regulation of preproendothelin-1 and endothelin-converting enzyme-1β genes in cardiac cells by mechanical load. Am J Physiol Regul Integr Comp Physiol 290(6):R1639-R1645, 2006.
43. Pikkarainen S, Tokola H, Kerkela R, Majalahti-Palviainen T, Vuolteenaho O, Ruskoaho H. Endothelin-1-specific activation of B-type natriuretic peptide gene via p38 mitogen-activated protein kinase and nuclear ETS factors. J Biol Chem 278(6):3969-3975, 2003.
44. Pikkarainen S, Tokola H, Majalahti-Palviainen T, Kerkela R, Hautala N, Bhalla SS, Charron F, Nemer M, Vuolteenaho O, Ruskoaho H. GATA-4 is a nuclear mediator of mechanical stretch-activated hypertrophic program. J Biol Chem 278(26):23807-23816, 2003.
45. Pimentel DR, Amin JK, Xiao L, Miller T, Viereck J, Oliver-Krasinski J, Baliga R, Wang J, Siwik DA, Singh K, Pagano P, Colucci WS, Sawyer DB. Reactive oxygen
FLEXCELL? INTERNATIONAL CORPORATION
11
species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89(5):453-460, 2001.
46. Prante C, Milting H, Kassner A, Farr M, Ambrosius M, Sch?n S, Seidler DG, Banayosy AE, K?rfer R, Kuhn J, Kleesiek K, G?tting C. Transforming growth factor β1-regulated xylosyltransferase I activity in human cardiac fibroblasts and its impact for myocardial remodeling. J Biol Chem 282(36):26441-26449, 2007. Epub 2007 Jul 16.
47. Rubbens MP, Driessen-Mol A, Boerboom RA, Koppert MM, van Assen HC, TerHaar Romeny BM, Baaijens FP, Bouten CV. Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 37(7):1263-1272, 2009. Epub 2009 May 5.
48. Ruwhof C, van Wamel AE, Egas JM, van der Laarse A. Cyclic stretch induces the release of growth promoting factors from cultured neonatal cardiomyocytes and cardiac fibroblasts. Mol Cell Biochem 208(1-2):89-98, 2000.
49. Ruwhof C, van Wamel AE, van der Valk LJ, Schrier PI, van der Laarse A. Direct, autocrine and paracrine effects of cyclic stretch on growth of myocytes and fibroblasts isolated from neonatal rat ventricles. Arch Physiol Biochem 109(1):10-17, 2001.
50. Ruwhof C, van Wamel JT, Noordzij LA, Aydin S, Harper JC, van der Laarse A. Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium 29(2):73-83, 2001.
51. Senyo SE, Koshman YE, Russell B. Stimulus interval, rate and direction differentially regulate phosphorylation for mechanotransduction in neonatal cardiac myocytes. FEBS Lett 581(22):4241-4247, 2007. Epub 2007 Aug 8.
52. Shyu KG, Ko WH, Yang WS, Wang BW, Kuan P. Insulin-like growth factor-1 mediates stretch-induced upregulation of myostatin expression in neonatal rat cardiomyocytes. Cardiovascular Research 68(3):405-414, 2005.
53. Sil P, Gupta S, Young D, Sen S. Regulation of myotrophin gene by pressure overload and stretch. Mol Cell Biochem 262(1-2):79-89, 2004.
54. Simmons CA, Nikolovski J, Thornton AJ, Matlis S, Mooney DJ. Mechanical stimulation and mitogen-activated protein kinase signaling independently regulate osteogenic differentiation and mineralization by calcifying vascular cells. Journal of Biomechanics 37(10):1531-1541, 2004.
55. Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K. The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling. J Biol Chem 280(21):20814-20823, 2005.
56. Swildens J, de Vries AA, Li Z, Umar S, Atsma DE, Schalij MJ, van der Laarse A. Integrin stimulation favors uptake of macromolecules by cardiomyocytes in vitro. Cell Physiol Biochem 26(6):999-1010, 2010. Epub 2011 Jan 4.
57. Tobita K, Garrison JB, Keller BB. Differential effects of cyclic stretch on embryonic ventricular cardiomyocyte and non-cardiomyocyte orientation. Edited by Clark EB, Nakazawa M, Takao A. Blackwell Futura Publishing:177-179, 2005.
58. Tomanek RJ, Zheng W. Role of growth factors in coronary morphogenesis. Tex Heart Inst J 29(4):250-254, 2002.
59. Tornatore TF, Dalla Costa AP, Clemente CF, Judice C, Rocco SA, Calegari VC, Cardoso L, Cardoso AC, Gon?alves A Jr, Franchini KG. A role for focal adhesion
FLEXCELL? INTERNATIONAL CORPORATION
12
kinase in cardiac mitochondrial biogenesis induced by mechanical stress. Am J Physiol Heart Circ Physiol 300(3):H902-H912, 2011. Epub 2010 Dec 10.
60. Torsoni AS, Constancio SS, Nadruz W, Jr., Hanks SK, Franchini KG. Focal adhesion kinase is activated and mediates the early hypertrophic response to stretch in cardiac myocytes. Circ Res 93(2):140-147, 2003.
61. Torsoni AS, Marin TM, Velloso LA, Franchini KG. RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 289(4):H1488-H1496, 2005.
62. Tsai CT, Chiang FT, Tseng CD, Yu CC, Wang YC, Lai LP, Hwang JJ, Lin JL. Mechanical stretch of atrial myocyte monolayer decreases sarcoplasmic reticulum calcium adenosine triphosphatase expression and increases susceptibility to repolarization alternans. J Am Coll Cardiol 58(20):2106-2115, 2011.
63. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59, 2011. Epub 2011 May 19.
64. Tyagi SC, Lewis K, Pikes D, Marcello A, Mujumdar VS, Smiley LM, Moore CK. Stretch-induced membrane type matrix metalloproteinase and tissue plasminogen activator in cardiac fibroblast cells. J Cell Physiol 176(2):374-382, 1998.
65. van Kesteren CA, Saris JJ, Dekkers DH, Lamers JM, Saxena PR, Schalekamp MA, Danser AH. Cultured neonatal rat cardiac myocytes and fibroblasts do not synthesize renin or angiotensinogen: evidence for stretch-induced cardiomyocyte hypertrophy independent of angiotensin II. Cardiovascular Research 43(1):148-156, 1999.
66. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A. The role of angiotensin II, endothelin-1 and transforming growth factor-β as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218(1-2):113-124, 2001.
67. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A. Stretch-induced paracrine hypertrophic stimuli increase TGF-β1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153, 2002.
68. van Wamel JE, Ruwhof C, van der Valk-Kokshoorn EJ, Schrier PI, van der Laarse A. Rapid gene transcription induced by stretch in cardiac myocytes and fibroblasts and their paracrine influence on stationary myocytes and fibroblasts. Pflugers Arch 439(6):781-788, 2000.
69. Wang BW, Hung HF, Chang H, Kuan P, Shyu KG. Mechanical stretch enhances the expression of resistin gene in cultured cardiomyocytes via tumor necrosis factor-α. Am J Physiol Heart Circ Physiol 293(4):H2305-H2312, 2007. Epub 2007 Jun 15.
70. Watson CJ, Phelan D, Xu M, Collier P, Neary R, Smolenski A, Ledwidge M, McDonald K, Baugh J. Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-β mediated fibrosis. Fibrogenesis Tissue Repair 5(1):9, 2012.
71. Wei CC, Chen Y, Powell LC, Zheng J, Shi K, Bradley WE, Powell PC, Ahmad S, Ferrario CM, Dell’Italia LJ. Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS One 7(6):e40110, 2012. Epub 2012 Jun 29.
FLEXCELL? INTERNATIONAL CORPORATION
13
72. Xi YT, Bai XJ, Wu GR, Ma AQ. Centrifugal force stretcher a new of in vitro mechanical cell stimulator. Sheng Li Xue Bao 56(3):419-423, 2004.
73. Yokoyama T, Sekiguchi K, Tanaka T, Tomaru K, Arai M, Suzuki T, Nagai R. Angiotensin II and mechanical stretch induce production of tumor necrosis factor in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 276:H1968-H1976, 1999.
74. Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-β. Am J Physiol Heart Circ Physiol 280(2):H909-H917, 2001.
75. Zhou C, Ziegler C, Birder LA, Stewart AF, Levitan ES. Angiotensin II and stretch activate NADPH oxidase to destabilize cardiac Kv4.3 channel mRNA. Circ Res 98(8):1040-1047, 2006.
Cardiovascular endothelial cells
76. Ali MH, Pearlstein DP, Mathieu CE, Schumacker PT. Mitochondrial requirement for endothelial responses to cyclic strain: implications for mechanotransduction. Am J Physiol Lung Cell Mol Physiol 287(3):L486-L496, 2004.
77. Awolesi MA, Sessa WC, Sumpio BE. Cyclic strain upregulates nitric oxide synthase in cultured bovine aortic endothelial cells. J Clin Invest 96(3):1449-1454, 1995.
78. Azuma N, Duzgun SA, Ikeda M, Kito H, Akasaka N, Sasajima T, Sumpio BE. Endothelial cell response to different mechanical forces. J Vasc Surg 32(4):789-794, 2000.
79. Baker PN, Stranko CP, Davidge ST, Davies PS, Roberts JM. Mechanical stress eliminates the effects of plasma from patients with preeclampsia on endothelial cells. Am J Obstet Gynecol 174(2):730-6, 1996.
80. Brophy CM, Mills I, Rosales O, Isales C, Sumpio BE. Phospholipase C: a putative mechanotransducer for endothelial cell response to acute hemodynamic changes. Biochem Biophys Res Commun 190(2):576-581, 1993.
81. Cevallos M, Riha GM, Wang X, Yang H, Yan S, Li M, Chai H, Yao Q, Chen C. Cyclic strain induces expression of specific smooth muscle cell markers in human endothelial cells. Differentiation 74(9-10):552-561, 2006.
82. Chang H, Wang BW, Kuan P, Shyu KG. Cyclical mechanical stretch enhances angiopoietin-2 and Tie2 receptor expression in cultured human umbilical vein endothelial cells. Clin Sci (Lond) 104(4):421-428, 2003.
83. Cheng JJ, Chao YJ, Wang DL. Cyclic strain activates redox-sensitive proline-rich tyrosine kinase 2 (PYK2) in endothelial cells. J Biol Chem 277(50):48152-48157, 2002.
84. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain enhances adhesion of monocytes to endothelial cells by increasing intercellular adhesion molecule-1 expression. Hypertension 28(3):386-391, 1996.
85. Cheng JJ, Wung BS, Chao YJ, Wang DL. Cyclic strain-induced reactive oxygen species involved in ICAM-1 gene induction in endothelial cells. Hypertension 31(1):125-30, 1998.
86. Cheng JJ, Wung BS, Chao YJ, Wang DL. Sequential activation of protein kinase C (PKC)-α and PKC-ε contributes to sustained Raf/ERK1/2 activation in endothelial cells under mechanical strain. J Biol Chem 276(33):31368-31375, 2001.
FLEXCELL? INTERNATIONAL CORPORATION
14
87. Coen P, Cummins P, Birney Y, Devery R, Cahill P. Modulation of nitric oxide and 6-keto-prostaglandin F(1α) production in bovine aortic endothelial cells by conjugated linoleic acid. Endothelium 11(3-4):211-20, 2004.
88. Cohen CR, Mills I, Du W, Kamal K, Sumpio BE. Activation of the adenylyl cyclase/cyclic AMP/protein kinase A pathway in endothelial cells exposed to cyclic strain. Exp Cell Res 231(1):184-189, 1997.
89. Cummins PM, Cotter EJ, Cahill PA. Hemodynamic regulation of metallopeptidases within the vasculature. Protein Pept Lett 11(5):433-442, 2004.
90. Cummins PM, von Offenberg Sweeney N, Killeen MT, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol Heart Circ Physiol 292:H28–H42, 2007.
91. Dekker RJ, van Thienen JV, Rohlena J, de Jager SC, Elderkamp YW, Seppen J, de Vries CJ, Biessen EA, van Berkel TJ, Pannekoek H, Horrevoets AJ. Endothelial KLF2 links local arterial shear stress levels to the expression of vascular tone-regulating genes. Am J Pathol 167(2):609-618, 2005.
92. Du W, Mills I, Sumpio BE. Cyclic strain causes heterogeneous induction of transcription factors, AP-1, CRE binding protein and NF-kB, in endothelial cells: species and vascular bed diversity. Journal of Biomechanics 28(12):1485-149, 1995.
93. Evans L, Frenkel L, Brophy CM, Rosales O, Sudhaker CB, Li G, Du W, Sumpio BE. Activation of diacylglycerol in cultured endothelial cells exposed to cyclic strain. Am J Physiol 272(2 Pt 1):C650-C656, 1997.
94. Fisslthaler B, Boengler K, Fleming I, Schaper W, Busse R, Deindl E. Identification of a cis-element regulating transcriptional activity in response to fluid shear stress in bovine aortic endothelial cells. Endothelium 10(4-5):267-75, 2003.
95. Fisslthaler B, Popp R, Michaelis UR, Kiss L, Fleming I, Busse R. Cyclic stretch enhances the expression and activity of coronary endothelium-derived hyperpolarizing factor synthase. Hypertension 38(6):1427-1432, 2001.
96. Fujioka K, Azuma N, Kito H, Gahtan V, Esato K, Sumpio BE. Role of caveolin in hemodynamic force-mediated endothelial changes. J Surg Res 92(1):7-10, 2000.
97. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A 105(32):11305-11310, 2008. Epub 2008 Aug 6.
98. Goettsch C, Goettsch W, Arsov A, Hofbauer LC, Bornstein SR, Morawietz H. Long-term cyclic strain downregulates endothelial Nox4. Antioxid Redox Signal 11(10):2385-2397, 2009.
99. Grigoryev DN, Ma SF, Irizarry RA, Ye SQ, Quackenbush J, Garcia JG. Orthologous gene-expression profiling in multi-species models: search for candidate genes. Genome Biol 5(5):R34, 2004. Epub 2004 Apr 27.
100. Haga M, Chen A, Gortler D, Dardik A, Sumpio BE. Shear stress and cyclic strain may suppress apoptosis in endothelial cells by different pathways. Endothelium 10(3):149-57, 2003.
101. Hishikawa K, Luscher TF. Pulsatile stretch stimulates superoxide production in human aortic endothelial cells. Circulation 96(10):3610-3616, 1997.
FLEXCELL? INTERNATIONAL CORPORATION
15
102. Hoshino Y, Nishimura K, Sumpio BE. Phosphatase PTEN is inactivated in bovine aortic endothelial cells exposed to cyclic strain. J Cell Biochem 100(2):515-526, 2007.
103. Howard AB, Alexander RW, Nerem RM, Griendling KK, Taylor WR. Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol Cell Physiol 272(2):C421-C427, 1997.
104. Iba T, Mills I, Sumpio BE. Intracellular cyclic AMP levels in endothelial cells subjected to cyclic strain in vitro. J Surg Res 52(6):625-630, 1992.
105. Iba T, Shin T, Sonoda T, Rosales O, Sumpio BE. Stimulation of endothelial secretion of tissue-type plasminogen activator by repetitive stretch. J Surg Res 50(5):457-460, 1991.
106. Iba T, Sumpio BE. Morphological response of human endothelial cells subjected to cyclic strain in vitro. Microvasc Res 42(3):245-254, 1991.
107. Ikeda M, Kito H, Sumpio BE. Phosphatidylinositol-3 kinase dependent MAP kinase activation via p21ras in endothelial cells exposed to cyclic strain. Biochem Biophys Res Commun 257(3):668-671, 1999.
108. Ikeda M, Takei T, Mills I, Kito H, Sumpio BE. Extracellular signal-regulated kinases 1 and 2 activation in endothelial cells exposed to cyclic strain. Am J Physiol Heart Circ Physiol 276:H614-H622, 1999.
109. Ikeda M, Takei T, Mills I, Sumpio BE. Calcium-independent activation of extracellular signal-regulated kinases 1 and 2 by cyclic strain. Biochem Biophys Res Commun 247(2):462-465, 1998.
110. Juan SH, Chen JJ, Chen CH, Lin H, Cheng CF, Liu JC, Hsieh MH, Chen YL, Chao HH, Chen TH, Chan P, Cheng TH. 17β-estradiol inhibits cyclic strain-induced endothelin-1 gene expression within vascular endothelial cells. Am J Physiol Heart Circ Physiol 287(3):H1254-H1261, 2004.
111. Kim JI, Cordova AC, Hirayama Y, Madri JA, Sumpio BE. Differential effects of shear stress and cyclic strain on Sp1 phosphorylation by protein kinase Czeta modulates membrane type 1-matrix metalloproteinase in endothelial cells. Endothelium 15(1):33-42, 2008.
112. Kito H, Yokoyama C, Inoue H, Tanabe T, Nakajima N, Sumpio BE. Cyclooxygenase expression in bovine aortic endothelial cells exposed to cyclic strain. Endothelium 6(2):107-112, 1998.
113. Korff T, Aufgebauer K, Hecker M. Cyclic stretch controls the expression of CD40 in endothelial cells by changing their transforming growth factor-β1 response. Circulation 116(20):2288-2297, 2007. Epub 2007 Oct 29.
114. Kou B, Zhang J, Singer DR. Effects of cyclic strain on endothelial cell apoptosis and tubulogenesis are dependent on ROS production via NAD(P)H subunit p22phox. Microvasc Res 77(2):125-133, 2009. Epub 2008 Aug 27.
115. Lauth M, Cattaruzza M, Hecker M. ACE inhibitor and AT1 antagonist blockade of deformation-induced gene expression in the rabbit jugular vein through B2 receptor activation. Arterioscler Thromb Vasc Biol 21(1):61-6, 2001.
116. Lauth M, Wagner AH, Cattaruzza M, Orzechowski HD, Paul M, Hecker M. Transcriptional control of deformation-induced preproendothelin-1 gene expression in endothelial cells. J Mol Med 78(8):441-450, 2000.
FLEXCELL? INTERNATIONAL CORPORATION
16
117. Lee T, Kim SJ, Sumpio BE. Role of PP2A in the regulation of p38 MAPK activation in bovine aortic endothelial cells exposed to cyclic strain. J Cell Physiol 194(3):349-355, 2003.
118. Li W, Sumpio BE. Strain-induced vascular endothelial cell proliferation requires PI3K-dependent mTOR-4E-BP1 signal pathway. Am J Physiol Heart Circ Physiol 288(4):H1591-1597, 2005.
119. Metzler SA, Pregonero CA, Butcher JT, Burgess SC, Warnock JN. Cyclic strain regulates pro-inflammatory protein expression in porcine aortic valve endothelial cells. J Heart Valve Dis 17(5):571-577, 2008.
120. Moldobaeva A, Jenkins J, Wagner E. Effects of distension on airway inflammation and venular P-selectin expression. Am J Physiol Lung Cell Mol Physiol 295(5):L941-L948, 2008. Epub 2008 Sep 19.
121. Morrow D, Cullen JP, Cahill PA, Redmond EM. Cyclic strain regulates the Notch/CBF-1 signaling pathway in endothelial cells: role in angiogenic activity. Arterioscler Thromb Vasc Biol 27:1289-1296, 2007.
122. Murata K, Mills I, Sumpio BE. Protein phosphatase 2A in stretch-induced endothelial cell proliferation. J Cell Biochem 63(3):311-319, 1996.
123. Nishimura K, Li W, Hoshino Y, Kadohama T, Asada H, Ohgi S, Sumpio BE. Role of AKT in cyclic strain-induced endothelial cell proliferation and survival. Am J Physiol Cell Physiol 290(3):C812-C821, 2006.
124. Okada M, Matsumori A, Ono K, Furukawa Y, Shioi T, Iwasaki A, Matsushima K, Sasayama S. Cyclic stretch upregulates production of interleukin-8 and monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 in human endothelial cells. Arterioscler Thromb Vasc Biol 18(6):894-901, 1998.
125. Pikkarainen S, Tokola H, Kerkela R, Ilves M, Makinen M, Orzechowski HD, Paul M, Vuolteenaho O, Ruskoaho H. Inverse regulation of preproendothelin-1 and endothelin-converting enzyme-1β genes in cardiac cells by mechanical load. Am J Physiol Regul Integr Comp Physiol 290(6):R1639-R1645, 2006.
126. Rakugi H, Yu H, Kamitani A, Nakamura Y, Ohishi M, Kamide K, Nakata Y, Takami S, Higaki J, Ogihara T. Links between hypertension and myocardial infarction. American Heart Journal 132(1 Pt 2 Su):213-221, 1996.
127. Regnault V, Perret-Guillaume C, Kearney-Schwartz A, Max JP, Labat C, Louis H, Wahl D, Pannier B, Lecompte T, Weryha G, Challande P, Safar ME, Benetos A, Lacolley P. Tissue factor pathway inhibitor: a new link among arterial stiffness, pulse pressure, and coagulation in postmenopausal women. Arterioscler Thromb Vasc Biol 31(5):1226-1232, 2011. Epub 2011 Feb 3.
128. Rosales OR, Isales CM, Barrett PQ, Brophy C, Sumpio BE. Exposure of endothelial cells to cyclic strain induces elevations of cytosolic Ca2+ concentration through mobilization of intracellular and extracellular pools. Biochem J 326(Pt 2):385-92, 1997.
129. Rosales OR, Sumpio BE. Changes in cyclic strain increase inositol trisphosphate and diacylglycerol in endothelial cells. Am J Physiol Cell Physiol 262(4):C956-C962, 1992.
130. Schneider SW, Yano Y, Sumpio BE, Jena BP, Geibel JP, Gekle M, Oberleithner H. Rapid aldosterone-induced cell volume increase of endothelial cells measured by the atomic force microscope. Cell Biol Int 21(11):759-768, 1997.
FLEXCELL? INTERNATIONAL CORPORATION
17
131. Segurola RJ Jr, Oluwole B, Mills I, Yokoyama C, Tanabe T, Kito H, Nakajima N, Sumpio BE. Cyclic strain is a weak inducer of prostacyclin synthase expression in bovine aortic endothelial cells. J Surg Res 69(1):135-138, 1997.
132. Sumpio BE, Banes AJ, Buckley M, Johnson G Jr. Alterations in aortic endothelial cell morphology and cytoskeletal protein synthesis during cyclic tensional deformation. J Vasc Surg 7(1):130-138, 1988.
133. Sumpio BE, Banes AJ, Levin LG, Johnson G Jr. Mechanical stress stimulates aortic endothelial cells to proliferate. J Vasc Surg 6(3):252-256, 1987.
134. Sumpio BE, Banes AJ, Link GW, Iba T. Modulation of endothelial cell phenotype by cyclic stretch: inhibition of collagen production. J Surg Res 48(5):415-420, 1990.
135. Sumpio BE, Banes AJ. Prostacyclin synthetic activity in cultured aortic endothelial cells undergoing cyclic mechanical deformation. Surgery 104(2):383-389, 1988.
136. Sumpio BE, Chang R, Xu WJ, Wang XJ, Du W. Regulation of tPA in endothelial cells exposed to cyclic strain: role of CRE, AP-2, and SSRE binding sites. Am J Physiol Cell Physiol 273:C1441-C1448, 1997.
137. Sumpio BE, Du W, Galagher G, Wang X, Khachigian LM, Collins T, Gimbrone MA Jr, Resnick N. Regulation of PDGF-B in endothelial cells exposed to cyclic strain. Arterioscler Thromb Vasc Biol 18(3):349-355, 1998.
138. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123-1130, 2009. Epub 2009 Apr 9.
139. Tomanek RJ, Zheng W. Role of growth factors in coronary morphogenesis. Tex Heart Inst J 29(4):250-254, 2002.
140. Ulfhammer E, Ridderstrale W, Andersson M, Karlsson L, Hrafnkelsdottir T, Jern S. Prolonged cyclic strain impairs the fibrinolytic system in cultured vascular endothelial cells. J Hypertens 23(8):1551-1557, 2005.
141. Upchurch GR Jr, Loscalzo J, Banes AJ. Changes in the amplitude of cyclic load biphasically modulate endothelial cell DNA synthesis and division. Vasc Med 2(1):19-24, 1997.
142. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A. The role of angiotensin II, endothelin-1 and transforming growth factor-β as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218(1-2):113-124, 2001.
143. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A. Stretch-induced paracrine hypertrophic stimuli increase TGF-β1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153, 2002.
144. Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. Gallolyticus isolates and human endothelial cells. BMC Microbiology 10:78, 2010.
145. von Offenberg Sweeney N, Cummins PM, Birney YA, Cullen JP, Redmond EM, Cahill PA. Cyclic strain-mediated regulation of endothelial matrix metalloproteinase-2 expression and activity. Cardiovascular Research 63(4):625-634, 2004.
146. von Offenberg Sweeney N, Cummins PM, Birney YA, Redmond EM, Cahill PA. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration. Biochemical and Biophysical Research Communications 320:325–333, 2004.
FLEXCELL? INTERNATIONAL CORPORATION
18
147. von Offenberg Sweeney, Cummins PM, Cotter EJ, Fitzpatrick PA, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated regulation of vascular endothelial cell migration and tube formation. Biochemical and Biophysical Research Communications 329:573–582, 2005.
148. Wang C, Jiao C, Hanlon HD, Zheng W, Tomanek RJ, Schatteman GC. Mechanical, cellular, and molecular factors interact to modulate circulating endothelial cell progenitors. Am J Physiol Heart Circ Physiol 286(5):H1985-H1993, 2004. Epub 2004 Jan 8.
149. Wang DL, Wung BS, Peng YC, Wang JJ. Mechanical strain increases endothelin-1 gene expression via protein kinase C pathway in human endothelial cells. J Cell Physiol 163(2):400-406, 1995.
150. Wang DL, Wung BS, Shyy YJ, Lin CF, Chao YJ, Usami S, Chien S. Mechanical strain induces monocyte chemotactic protein-1 gene expression in endothelial cells. Effects of mechanical strain on monocyte adhesion to endothelial cells. Circ Res 77(2):294-302, 1995.
151. Widmann MD, Letsou GV, Phan S, Baldwin JC, Sumpio BE. Isolation and characterization of rabbit cardiac endothelial cells: Response to cyclic strain and growth factors in vitro. Journal of Surgical Research 53(4):331-334, 1992.
152. Wilson CJ, Kasper G, Schütz MA, Duda GN. Cyclic strain disrupts endothelial network formation on Matrigel. Microvasc Res 78(3):358-63, 2009. Epub 2009 Aug 18.
153. Woodell JE, LaBerge M, Langan EM 3rd, Hilderman RH. In vitro strain-induced endothelial cell dysfunction determined by DNA synthesis. Proc Inst Mech Eng [H] 217(1):13-20, 2003.
154. Woodell JE, LaBerge M, Langan EM 3rd, Hilderman RH. P1,P4-diadenosine 5’-tetraphosphate induced DNA synthesis in mechanically injured cultured endothelial cells. Proc Inst Mech Eng [H] 217(1):21-26, 2003.
155. Wung BS, Cheng JJ, Chao YJ, Hsieh HJ, Wang DL. Modulation of Ras/Raf/extracellular signal-regulated kinase pathway by reactive oxygen species is involved in cyclic strain-induced early growth response-1 gene expression in endothelial cells. Circ Res 84(7):804-812, 1999.
156. Wung BS, Cheng JJ, Chao YJ, Lin J, Shyy YJ, Wang DL. Cyclical strain increases monocyte chemotactic protein-1 secretion in human endothelial cells. Am J Physiol Heart Circ Physiol 270(4):H1462-H1468, 1996.
157. Wung BS, Cheng JJ, Hsieh HJ, Shyy YJ, Wang DL. Cyclic strain-induced monocyte chemotactic protein-1 gene expression in endothelial cells involves reactive oxygen species activation of activator protein 1. Circ Res 81(1):1-7, 1997.
158. Wung BS, Cheng JJ, Shyue SK, Wang DL. NO modulates monocyte chemotactic protein-1 expression in endothelial cells under cyclic strain. Arterioscler Thromb Vasc Biol 21(12):1941-1947, 2001.
159. Yamaguchi S, Yamaguchi M, Yatsuyanagi E, Yun SS, Nakajima N, Madri JA, Sumpio BE. Cyclic strain stimulates early growth response gene product 1-mediated expression of membrane type 1 matrix metalloproteinase in endothelium. Lab Invest 82(7):949-956, 2002.
160. Yano Y, Geibel J, Sumpio BE. Cyclic strain induces reorganization of integrin α5β1 and α2β1 in human umbilical vein endothelial cells. J Cell Biochem 64(3):505-513, 1997.
FLEXCELL? INTERNATIONAL CORPORATION
19
161. Yano Y, Geibel J, Sumpio BE. Tyrosine phosphorylation of pp125FAK and paxillin in aortic endothelial cells induced by mechanical strain. Am J Physiol Cell Physiol 271:C635-C649, 1996.
162. Yano Y, Saito Y, Narumiya S, Sumpio BE. Involvement of rho p21 in cyclic strain-induced tyrosine phosphorylation of focal adhesion kinase (pp125FAK), morphological changes and migration of endothelial cells. Biochem Biophys Res Commun 224(2):508-515, 1996.
163. Zheng W, Christensen LP, Tomanek RJ. Stretch induces upregulation of key tyrosine kinase receptors in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 287(6):H2739-H2745, 2004.
164. Zheng W, Seftor EA, Meininger CJ, Hendrix MJ, Tomanek RJ. Mechanisms of coronary angiogenesis in response to stretch: role of VEGF and TGF-β. Am J Physiol Heart Circ Physiol 280(2):H909-H917, 2001.
165. Zheng W, Christensen LP, Tomanek RJ. Differential effects of cyclic and static stretch on coronary microvascular endothelial cell receptors and vasculogenic/angiogenic responses. Am J Physiol Heart Circ Physiol 295:H794–H800, 2008.
Cardiovascular smooth muscle cells
166. Allison DA, Wight TN, Ripp NJ, Braun KR, Grande-Allen KJ. Endogenous overexpression of hyaluronan synthases within dynamically cultured collagen gels: Implications for vascular and valvular disease. Biomaterials 29:2969-2976, 2008.
167. Birukov KG, Shirinsky VP, Stepanova OV, Tkachuk VA, Hahn AW, Resink TJ, Smirnov VN. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol Cell Biochem 144(2):131-139, 1995.
168. Capers Q 4th, Alexander RW, Lou P, De Leon H, Wilcox JN, Ishizaka N, Howard AB, Taylor WR. Monocyte chemoattractant protein-1 expression in aortic tissues of hypertensive rats. Hypertension 30(6):1397-1402, 1997.
169. Cattaruzza M, Berger MM, Ochs M, Fayyazi A, Fuzesi L, Richter J, Hecker M. Deformation-induced endothelin B receptor-mediated smooth muscle cell apoptosis is matrix-dependent. Cell Death Differ 9(2):219-226, 2002.
170. Cattaruzza M, Dimigen C, Ehrenreich H, Hecker M. Stretch-induced endothelin B receptor-mediated apoptosis in vascular smooth muscle cells. FASEB J 14(7):991-998, 2000.
171. Chang H, Shyu KG, Wang BW, Kuan P. Regulation of hypoxia-inducible factor-1α by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci (Lond) 105(4):447-456, 2003.
172. Chapman GB, Durante W, Hellums JD, Schafer AI. Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 278:H748-H754, 2000.
173. Chen AH, Gortler DS, Kilaru S, Araim O, Frangos SG, Sumpio BE. Cyclic strain activates the pro-survival Akt protein kinase in bovine aortic smooth muscle cells. Surgery 130(2):378-381, 2001.
174. Chen Q, Li W, Quan Z, Sumpio BE. Modulation of vascular smooth muscle cell alignment by cyclic strain is dependent on reactive oxygen species and P38 mitogen-activated protein kinase. J Vasc Surg 37(3):660-668, 2003.
FLEXCELL? INTERNATIONAL CORPORATION
20
175. Cheng J, Du J. Mechanical stretch simulates proliferation of venous smooth muscle cells through activation of the insulin-like growth factor-1 receptor. Arterioscler Thromb Vasc Biol 27(8):1744-1751, 2007. Epub 2007 May 31.
176. Cheng J, Zhang J, Merched A, Zhang L, Zhang P, Truong L, Boriek AM, Du J. Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin αVβ3 and stablization of PINCH-1. J Biol Chem 282(47):34268-34275, 2007. Epub 2007 Sep 18.
177. Cheng WP, Hung HF, Wang BW, Shyu KG. The molecular regulation of GADD153 in apoptosis of cultured vascular smooth muscle cells by cyclic mechanical stretch. Cardiovascular Research 77:551–559, 2008.
178. Clements ML, Banes AJ, Faber JE. Effect of mechanical loading on vascular α1D- and α1B-adrenergic receptor expression. Hypertension 29(5):1156-1164, 1997.
179. Clements ML, Faber JE. Mechanical load opposes angiotensin-mediated decrease in vascular α1-adrenoceptors. Hypertension 29(5):1165-1172, 1997.
180. Colombo A, Guha S, Mackle JN, Cahill PA, Lally C. Cyclic strain amplitude dictates the growth response of vascular smooth muscle cells in vitro: role in in-stent restenosis and inhibition with a sirolimus drug-eluting stent, 2012 Sep 8. [Epub ahead of print]
181. Cunningham JJ, Linderman JJ, Mooney DJ. Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Ann Biomed Eng 30(7):927-935, 2002.
182. Dangers M, Kiyan J, Grote K, Schieffer B, Haller H, Dumler I. Mechanical stress modulates SOCS-1 expression in human vascular smooth muscle cells. J Vasc Res 47(5):432-440, 2010. Epub 2010 Feb 6.
183. Davis MG, Ali S, Leikauf GD, Dorn GW 2nd. Tyrosine kinase inhibition prevents deformation-stimulated vascular smooth muscle growth. Hypertension 24(6):706-713, 1994.
184. Dethlefsen SM, Shepro D, D’Amore PA. Comparison of the effects of mechanical stimulation on venous and arterial smooth muscle cells in vitro. J Vasc Res 33(5):405-413, 1996.
185. de Waard V, Arkenbout EK, Vos M, Mocking AI, Niessen HW, Stooker W, de Mol BA, Quax PH, Bakker EN, VanBavel E, Pannekoek H, de Vries CJ. TR3 nuclear orphan receptor prevents cyclic stretch-induced proliferation of venous smooth muscle cells. Am J Pathol 168:2027–2035, 2006.
186. Faber JE, Yang N, Xin X. Expression of α-adrenoceptor subtypes by smooth muscle cells and adventitial fibroblasts in rat aorta and in cell culture. J Pharmacol Exp Ther 298(2):441-452, 2001.
187. Grote K, Bavendiek U, Grothusen C, Flach I, Hilfiker-Kleiner D, Drexler H, Schieffer B. Stretch-inducible expression of the angiogenic factor CCN1 in vascular smooth muscle cells is mediated by Egr-1. J Biol Chem 279(53):55675-55681, 2004.
188. Grote K, Flach I, Luchtefeld M, Akin E, Holland SM, Drexler H, Schieffer B. Mechanical stretch enhances mRNA expression and proenzyme release of matrix metalloproteinase-2 (MMP-2) via NAD(P)H oxidase-derived reactive oxygen species. Circ Res 92(11):e80-86, 2003.
189. Hamada K, Takuwa N, Yokoyama K, Takuwa Y. Stretch activates Jun N-terminal kinase/stress-activated protein kinase in vascular smooth muscle cells through
FLEXCELL? INTERNATIONAL CORPORATION
21
mechanisms involving autocrine ATP stimulation of purinoceptors. J Biol Chem 273(11):6334-6340, 1998.
190. Han O, Takei T, Basson M, Sumpio BE. Translocation of PKC isoforms in bovine aortic smooth muscle cells exposed to strain. J Cell Biochem 80(3):367-372, 2001.
191. Hipper A, Isenberg G. Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pflugers Arch 440(1):19-27, 2000.
192. Hishikawa K, Oemar BS, Yang Z, Luscher TF. Pulsatile stretch stimulates superoxide production and activates nuclear factor-κB in human coronary smooth muscle. Circ Res 81(5):797-803, 1997.
193. Hitomi H, Fukui T, Moriwaki K, Matsubara K, Sun GP, Rahman M, Nishiyama A, Kiyomoto H, Kimura S, Ohmori K, Abe Y, Kohno M. Synergistic effect of mechanical stretch and angiotensin II on superoxide production via NADPH oxidase in vascular smooth muscle cells. J Hypertens 24(6):1097-1104, 2006.
194. Hoffmann SE, Kuriakose M, Songu-Mize E. Stretch-induced downregulation of TRPC4 does not decrease capacitative calcium entry in vascular smooth muscle cells [abstract]. Hypertension 46:P80, 2005.
195. Hoffmann SE, Kuriakose M, Songu-Mize E. Stretch-induced TRPC4 downregulation in RASM cells may be due to changes in intracellular calcium [abstract]. FASEB J 20:699.17, 2006.
196. Howard AB, Alexander RW, Nerem RM, Griendling KK, Taylor WR. Cyclic strain induces an oxidative stress in endothelial cells. Am J Physiol Cell Physiol 272(2):C421-C427, 1997.
197. Hu Y, Bock G, Wick G, Xu Q. Activation of PDGF receptor α in vascular smooth muscle cells by mechanical stress. FASEB J 12(12):1135-1142, 1998.
198. Iwasaki H, Eguchi S, Ueno H, Marumo F, Hirata Y. Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol 278(2):H521-H529, 2000.
199. Iwasaki H, Yoshimoto T, Sugiyama T, Hirata Y. Activation of cell adhesion kinase ? by mechanical stretch in vascular smooth muscle cells. Endocrinology 144(6):2304-2310, 2003.
200. Jiang MJ, Yu YJ, Chen YL, Lee YM, Hung LS. Cyclic strain stimulates monocyte chemotactic protein-1 mRNA expression in smooth muscle cells. J Cell Biochem 76(2):303-310, 2000.
201. Kakisis JD, Pradhan S, Cordova A, Liapis CD, Sumpio BE. The role of STAT-3 in the mediation of smooth muscle cell response to cyclic strain. Int J Biochem Cell Biol 37(7):1396-1406, 2005.
202. Kawabe J, Okumura S, Lee MC, Sadoshima J, Ishikawa Y. Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 286(5):H1845-1852, 2004.
203. Kim BS, Nikolovski J, Bonadio J, Mooney DJ. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat Biotech 17(10):979-983, 1999.
204. Kogata N, Tribe RM, F?ssler R, Way M, Adams RH. Integrin-linked kinase controls vascular wall formation by negatively regulating Rho/ROCK-mediated vascular smooth muscle cell contraction. Genes Dev 23(19):2278-2283, 2009.
FLEXCELL? INTERNATIONAL CORPORATION
22
205. Kona S, Chellamuthu P, Xu H, Hills SR, Nguyen KT. Effects of cyclic strain and growth factors on vascular smooth muscle cell responses. Open Biomed Eng J 3:28-38, 2009.
206. Kozai T, Eto M, Yang Z, Shimokawa H, Luscher TF. Statins prevent pulsatile stretch-induced proliferation of human saphenous vein smooth muscle cells via inhibition of Rho/Rho-kinase pathway. Cardiovasc Res 68(3):475-482, 2005.
207. Kurpinski K, Park J, Thakar RG, Li S. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol Cell Biomech 3(1):21-34, 2006.
208. Li C, Hu Y, Mayr M, Xu Q. Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J Biol Chem 274(36):25273-25280, 1999.
209. Li C, Hu Y, Sturm G, Wick G, Xu Q. Ras/Rac-Dependent activation of p38 mitogen-activated protein kinases in smooth muscle cells stimulated by cyclic strain stress. Arterioscler Thromb Vasc Biol 20(3):E1-E9, 2000.
210. Li Q, Muragaki Y, Hatamura I, Ueno H, Ooshima A. Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-β. J Vasc Res 35(2):93-103, 1998.
211. Li W, Chen Q, Mills I, Sumpio BE. Involvement of S6 kinase and p38 mitogen activated protein kinase pathways in strain-induced alignment and proliferation of bovine aortic smooth muscle cells. J Cell Physiol 195(2):202-209, 2003.
212. Licht AH, Nübel T, Feldner A, Jurisch-Yaksi N, Marcello M, Demicheva E, Hu JH, Hartenstein B, Augustin HG, Hecker M, Angel P, Korff T, Schorpp-Kistner M. Junb regulates arterial contraction capacity, cellular contractility, and motility via its target Myl9 in mice. J Clin Invest 120(7):2307-2318, 2010. doi: 10.1172/JCI41749. Epub 2010 Jun 14.
213. Lindsey-Hoffmann SE, Songu-Mize E. Cyclic stretch decreases capacitative calcium entry in vascular smooth muscle cells from resistance and conduit vessels [abstract]. Experimental Biology, 2007.
214. Ling S, Deng G, Ives HE, Chatterjee K, Rubanyi GM, Komesaroff PA, Sudhir K. Estrogen inhibits mechanical strain-induced mitogenesis in human vascular smooth muscle cells via down-regulation of Sp-1. Cardiovascular Research 50(1):108-114, 2001.
215. Liu B, Qu MJ, Qin KR, Li H, Li ZK, Shen BR, Jiang ZL. Role of cyclic strain frequency in regulating the alignment of vascular smooth muscle cells in vitro. Biophys J 94:1497-1507, 2008.
216. Liu G, Hitomi H, Hosomi N, Lei B, Pelisch N, Nakano D, Kiyomoto H, Ma H, Nishiyama A. Mechanical stretch potentiates angiotensin II-induced proliferation in spontaneously hypertensive rat vascular smooth muscle cells. Hypertens Res 33(12):1250-1257, 2010. Epub 2010 Oct 7.
217. Liu X, Hymel LJ, Songu-Mize E. Involvement of intracellular Ca2+ and Na+ in stretch-regulated Na+, K+-ATPase α isoform expression in cultured vascular smooth muscle cells [abstract]. FASEB J 11:A263, 1526, 1997.
218. Liu X, Hymel LJ, Songu-Mize E. Mechanosensitivity of Na+, K+-ATPase α subunit expression in aortic smooth muscle cells [abstract]. Biophys J 70:A348, Tu-Pos 497, 1996.
FLEXCELL? INTERNATIONAL CORPORATION
23
219. Liu X, Hymel LJ, Songu-Mize E. Role of Na+ and Ca2+ in stretch-induced Na+-K+-ATPase α-subunit regulation in aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 274:H83–H89, 1998.
220. Liu X, Hymel LJ, Songu-Mize E. Sodium entry through stretch-activated channels mediates upregulation of Na+, K+-ATPase α isoforms in aortic smooth muscle cells [abstract]. Hypertension 30(Part 1):512, P175, 1997.
221. Lundberg MS, Sadhu DN, Grumman VE, Chilian WM, Ramos KS. Actin isoform and α1B-adrenoceptor gene expression in aortic and coronary smooth muscle is influenced by cyclical stretch. In Vitro Cell Dev Biol Anim 31(8):595-600, 1995.
222. Mayr M, Li C, Zou Y, Huemer U, Hu Y, Xu Q. Biomechanical stress-induced apoptosis in vein grafts involves p38 mitogen-activated protein kinases. FASEB J 14(2):261-270, 2000.
223. Metzler B, Abia R, Ahmad M, Wernig F, Pachinger O, Hu Y, Xu Q. Activation of heat shock transcription factor 1 in atherosclerosis. Am J Pathol 162(5):1669-1676, 2003.
224. Mills I, Cohen CR, Kamal K, Li G, Shin T, Du W, Sumpio BE. Strain activation of bovine aortic smooth muscle cell proliferation and alignment: study of strain dependency and the role of protein kinase A and C signaling pathways. J Cell Physiol 170(3):228-34, 1997.
225. Mills I, Murata K, Packer CS, Sumpio BE. Cyclic strain stimulates dephosphorylation of the 20kDa regulatory myosin light chain in vascular smooth muscle cells. Biochem Biophys Res Commun 205(1):79-84, 1994. Erratum in: Biochem Biophys Res Commun 207(3):1058, 1995.
226. Mohanty MJ, Li X. Stretch-induced Ca2+ release via an IP3-insensitive Ca2+ channel. Am J Physiol Cell Physiol 283(2):C456-C462, 2002.
227. Morawietz H, Ma YH, Vives F, Wilson E, Sukhatme VP, Holtz J, Ives HE. Rapid induction and translocation of Egr-1 in response to mechanical strain in vascular smooth muscle cells. Circ Res 84(6):678-687, 1999.
228. Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA. Notch-mediated CBF-1/RBP-Jκ-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol 289(5):C1188-C1196, 2005.
229. Morrow D, Sweeney C, Birney YA, Cummins PM, Walls D, Redmond EM, Cahill PA. Cyclic strain inhibits Notch receptor signaling in vascular smooth muscle cells in vitro. Circ Res 96(5):567-575, 2005.
230. Morrow D, Sweeney C, Birney YA, Guha S, Collins N, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA. Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. Am J Physiol Cell Physiol 292(1):C488-C496, 2007.
231. Noda M, Katoh T, Takuwa N, Kumada M, Kurokawa K, Takuwa Y. Synergistic stimulation of parathyroid hormone-related peptide gene expression by mechanical stretch and angiotensin II in rat aortic smooth muscle cells. J Biol Chem 269(27):17911-17917, 1994.
232. Noda M, Takuwa Y, Katoh T, Kurokawa K. Stretch-induced parathyroid hormone-related peptide gene expression: implication in the regulation of myogenic tone. Curr Opin Nephrol Hypertens 4(5):383-387, 1995.
FLEXCELL? INTERNATIONAL CORPORATION
24
233. Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T. Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circ Res 85(1):5-11, 1999.
234. O’Callaghan CJ, Williams B. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-β1. Hypertension 36(3):319-324, 2000.
235. Putnam AJ, Cunningham JJ, Dennis RG, Linderman JJ, Mooney DJ. Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. J Cell Sci 111(Pt 22):3379-3387, 1998.
236. Pyle AL, Atkinson JB, Pozzi A, Reese J, Eckes B, Davidson JM, Crimmins DL, Young PP. Regulation of the atheroma-enriched protein, SPRR3, in vascular smooth muscle cells through cyclic strain is dependent on integrin α1β1/collagen interaction. Am J Pathol 173(5):1577-1588, 2008. Epub 2008 Oct 2.
237. Qu M, Liu B, Jiang Z. Effect of frequency of cyclic tensile strain on extracellular matrix of rat vascular smooth muscle cells in vitro. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 25(4):826-830, 2008.
238. Qu MJ, Liu B, Qi YX, Jiang ZL. Role of Rac and Rho-GDI α in the frequency-dependent expression of h1-calponin in vascular smooth muscle cells under cyclic mechanical strain. Ann Biomed Eng 36(9):1481-1488, 2008. Epub 2008 Jun 20.
239. Qu MJ, Liu B, Wang HQ, Yan ZQ, Shen BR, Jiang ZL. Frequency-dependent phenotype modulation of vascular smooth muscle cells under cyclic mechanical strain. J Vasc Res 44(5):345-353, 2007. Epub 2007 May 3.
240. Rakugi H, Yu H, Kamitani A, Nakamura Y, Ohishi M, Kamide K, Nakata Y, Takami S, Higaki J, Ogihara T. Links between hypertension and myocardial infarction. American Heart Journal 132(1 Pt 2 Su):213-221, 1996.
241. Regnault V, Perret-Guillaume C, Kearney-Schwartz A, Max JP, Labat C, Louis H, Wahl D, Pannier B, Lecompte T, Weryha G, Challande P, Safar ME, Benetos A, Lacolley P. Tissue factor pathway inhibitor: a new link among arterial stiffness, pulse pressure, and coagulation in postmenopausal women. Arterioscler Thromb Vasc Biol 31(5):1226-1232, 2011. Epub 2011 Feb 3.
242. Reusch P, Wagdy H, Reusch R, Wilson E, Ives HE. Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circ Res 79(5):1046-1053, 1996.
243. Reyna SV, Ensenat D, Johnson FK, Wang H, Schafer AI, Durante W. Cyclic strain stimulates L-proline transport in vascular smooth muscle cells. American Journal of Hypertension 17(8):712-717, 2004.
244. Richard MN, Deniset JF, Kneesh AL, Blackwood D, Pierce GN. Mechanical stretching stimulates smooth muscle cell growth, nuclear protein import, and nuclear pore expression through mitogen-activated protein kinase activation. J Biol Chem 282(32):23081-23088, 2007. Epub 2007 May 24.
245. Ruiz-Velasco V, Mayer MB, Hymel LJ. Dihydropyridine-sensitive Ca2+ influx modulated by stretch in A7r5 vascular smooth muscle cells. European Journal of Pharmacology 296(3):327-334, 1996.
246. Schad JF, Meltzer KR, Hicks MR, Beutler DS, Cao TV, Standley PR. Cyclic strain upregulates VEGF and attenuates proliferation of vascular smooth muscle cells. Vasc Cell 3:21, 2011.
FLEXCELL? INTERNATIONAL CORPORATION
25
247. Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96(6):635-642, 2005.
248. Sedding DG, Homann M, Seay U, Tillmanns H, Preissner KT, Braun-Dullaeus RC. Calpain counteracts mechanosensitive apoptosis of vascular smooth muscle cells in vitro and in vivo. FASEB J 22(2):579-589, 2008. Epub 2007 Sep 10.
249. Sevieux N, Alam J, Songu-Mize E. Effect of cyclic stretch on α-subunit mRNA expression of Na+-K+-ATPase in aortic smooth muscle cells. Am J Physiol Cell Physiol 280(6):C1555-C1560, 2001.
250. Sevieux N, Alam J, Songu-Mize E. Effect of cyclic stretch on transcriptional regulation of the α subunits of Na+, K+-ATPase in aortic smooth muscle cells [abstract]. FASEB J 14:A331, 272.5, 2000.
251. Sevieux N, Alam J, Wiltse S, Songu-Mize E. Expression of the α subunit mRNA of Na+, K+-ATPase in response to cyclic stretch in aortic smooth muscle cells [abstract]. FASEB J 13:351.4, 1999.
252. Sevieux N, Ark M, Hornick C, Songu-Mize E. Short-term stretch translocates the α-1-subunit of the Na pump to plasma membrane. Cell Biochem Biophys 38(1):23-32, 2003.
253. Shyu KG, Chao YM, Wang BW, Kuan P. Regulation of discoidin domain receptor 2 by cyclic mechanical stretch in cultured rat vascular smooth muscle cells. Hypertension 46(3):614-621, 2005.
254. Shyu KG, Wang BW, Kuan P, Chang H. RNA interference for discoidin domain receptor 2 attenuates neointimal formation in balloon injured rat carotid artery. Arterioscler Thromb Vasc Biol 28(8):1447-1453, 2008. Epub 2008 May 22.
255. Songu-Mize E, Jacobs M, Shreves A. Acute cyclic stretch induces upregulation of the Na-pump of aortic smooth muscle cells in culture by cytoplasmic translocation [abstract]. FASEB J 13:351.5, 1999.
256. Songu-Mize E, Jacobs M. Effect of cyclic in vitro stretch on aortic smooth muscle cell p42 and p44 mitogen acticated kinases [abstract]. FASEB J 12(Part I):A403, 2342, 1998.
257. Songu-Mize E, Liu X, Hymel LJ. Effect of mechanical strain on expression of Na+,K+-ATPase α subunits in rat aortic smooth muscle cells. Amer J Med Sci 316(3):196-199, 1998.
258. Songu-Mize E, Liu X, Stones JE, Hymel LJ. Regulation of Na+, K+-ATPase α-subunit expression by mechanical strain in aortic smooth muscle cells. Hypertension 27:827-832, 1996.
259. Songu-Mize E, Liu X. Effect of cyclic mechanical strain on expression of Na+,K+-ATPase α subunits in rat aortic smooth muscle cells [abstract]. Cellular Deformation: Mechanics and Mechanisms of Physiological Response Meeting, Atlanta GA, October 1997.
260. Songu-Mize E, Sevieux N, Liu X, Jacobs M. Effect of short-term cyclic stretch on sodium pump activity in aortic smooth muscle cells. Amer J Physiol Heart Circ Physiol 281:H2072-H2078, 2001.
FLEXCELL? INTERNATIONAL CORPORATION
26
261. Standley PR, Camaratta A, Nolan BP, Purgason CT, Stanley MA. Cyclic stretch induces vascular smooth muscle cell alignment via NO signaling. Am J Physiol Heart Circ Physiol 283(5):H1907-H1914, 2002.
262. Standley PR, Obards TJ, Martina CL. Cyclic stretch regulates autocrine IGF-I in vascular smooth muscle cells: implications in vascular hyperplasia. Am J Physiol Endocrinol Metab 276:E697-E705, 1999.
263. Standley PR, Stanley MA, Senechal P. Activation of mitogenic and antimitogenic pathways in cyclically stretched arterial smooth muscle. Am J Physiol Endocrinol Metab 281(6):E1165-E1171, 2001.
264. Stanley AG, Knight AL, Williams B. Mechanical strain sensitizes human vascular smooth muscle cells to angiotensin II. American Journal of Hypertension 13(4 Suppl 1):S12, 2000.
265. Stanley AG, Patel H, Knight AL, Williams B. Mechanical strain-induced human vascular matrix synthesis: the role of angiotensin II. J Renin Angiotensin Aldosterone Syst 1(1):32-35, 2000.
266. Stones J, Liu X, Hymel L, Songu-Mize E. Upregulation of Na+, K+-ATPase α-1 subunit in aortic smooth muscle cells stretched in culture [abstract]. Hypertension 26:578, P158, 1995.
267. Su BY, Shontz KM, Flavahan NA, Nowicki PT. The effect of phenotype on mechanical stretch-induced vascular smooth muscle cell apoptosis. J Vasc Res 43(3):229-237, 2006.
268. Sumpio BE, Banes AJ, Link WG, Johnson G Jr. Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch Surg 123(10):1233-1236, 1988.
269. Sumpio BE, Banes AJ. Response of porcine aortic smooth muscle cells to cyclic tensional deformation in culture. J Surg Res 44(6):696-701, 1988.
270. Tamura K, Chen YE, Lopez-Ilasaca M, Daviet L, Tamura N, Ishigami T, Akishita M, Takasaki I, Tokita Y, Pratt RE, Horiuchi M, Dzau VJ, and Umemura S. Molecular mechanism of fibronectin gene activation by cyclic stretch in vascular smooth muscle cells. J Biol Chem 275(44):34619-34627, 2000.
271. Tan W, Scott D, Belchenko D, Qi HJ, Xiao L. Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells. Biomed Microdevices 10(6):869-882, 2008.
272. Tock J, Van Putten V, Stenmark KR, Nemenoff RA. Induction of SM-α-actin expression by mechanical strain in adult vascular smooth muscle cells is mediated through activation of JNK and p38 MAP kinase. Biochem Biophys Res Commun 301(4):1116-1121, 2003.
273. van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, Schrier PI, van der Laarse A. The role of angiotensin II, endothelin-1 and transforming growth factor-β as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem 218(1-2):113-124, 2001.
274. van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, Schrier PI, van der Laarse A. Stretch-induced paracrine hypertrophic stimuli increase TGF-β1 expression in cardiomyocytes. Mol Cell Biochem 236(1-2):147-153, 2002.
FLEXCELL? INTERNATIONAL CORPORATION
27
275. von Offenberg Sweeney N, Cummins PM, Birney YA, Redmond EM, Cahill PA. Cyclic strain-induced endothelial MMP-2: role in vascular smooth muscle cell migration. Biochemical and Biophysical Research Communications 320:325–333, 2004.
276. Walker-Caprioglio HM, Hunter DD, McGuire PG, Little SA, McGuffee LJ. Composition in situ and in vitro of vascular smooth muscle laminin in the rat. Cell Tissue Res 281(1):187-196, 1995.
277. Wernig F, Mayr M, Xu Q. Mechanical stretch-induced apoptosis in smooth muscle cells is mediated by β1-integrin signaling pathways. Hypertension 41(4):903-911, 2003.
278. Wiersbitzky M, Mills I, Sumpio BE, Gewirtz H. Chronic cyclic strain reduces adenylate cyclase activity and stimulatory G protein subunit levels in coronary smooth muscle cells. Exp Cell Res 210(1):52-55, 1994.
279. Wilson E, Mai Q, Sudhir K, Weiss RH, Ives HE. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J Cell Biol 123(3):741-747, 1993.
280. Wilson E, Vives F, Collins T, Ives HE. Strain-responsive regions in the platelet-derived growth factor-A gene promoter. Hypertension 31(1 Pt 2):170-175, 1998.
281. Yang Z, Noll G, Luscher TF. Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet- derived growth factor. Circulation 88:832-836, 1993.
282. Zampetaki A, Zhang Z, Hu Y, Xu Q. Biomechanical stress induces IL-6 expression in smooth muscle cells via Ras/Rac1-p38 MAPK-NF-κB signaling pathways. Am J Physiol Heart Circ Physiol 288(6):H2946-H2954, 2005.
Other cardiovascular cells
283. Balguid A, Rubbens MP, Mol A, Bank RA, Bogers AJ, van Kats JP, de Mol BA, Baaijens FP, Bouten CV. The role of collagen cross-links in biomechanical behavior of human aortic heart valve leaflets - relevance for tissue engineering. Tissue Eng 13(7):1501-1511, 2007.
284. Boerboom RA, Rubbens MP, Driessen NJ, Bouten CV, Baaijens FP. Effect of strain magnitude on the tissue properties of engineered cardiovascular constructs. Annals of Biomedical Engineering 36(2):244–253, 2008.
285. Clause KC, Tinney JP, Liu JL, Keller BB, Huard J, Tobita K. p38MAP-kinase regulates cardiomyocyte proliferation and contractile properties of engineered early embryonic cardiac tissue [abstract]. Weinstein Cardiovascular Development Research Conference, Indianapolis, IN, 2007.
286. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Engineering Part A 15(6):1373-1380, 2009.
287. Foolen J, Baaijens F. Stress-fiber remodeling in 3D: ‘contact guidance vs stretch avoidance’? QScience Proceedings vol. 2012, Heart Valve Biology and Tissue Engineering, pp. 62, 2012. doi: 10.5339/qproc.2012.heartvalve.4.62
288. Gupta V, Grande-Allen KJ. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72(3):375-383, 2006. Epub 2006 Sep 1.
FLEXCELL? INTERNATIONAL CORPORATION
28
289. Kapur NK, Deming CB, Kapur S, Bian C, Champion HC, Donahue JK, Kass DA, Rade JJ. Hemodynamic modulation of endocardial thromboresistance. Circulation 115(1):67-75, 2007.
290. Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A, Podewski E, Hilfiker A, Schroder F, Leitges M, Drexler H. Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKCε. Circ Res 96(7):748-755, 2005.
291. Ku CH, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM, Yacoub MH, Chester AH. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res 71(3):548-556, 2006. Epub 2006 Apr 7.
292. Rakesh K, Yoo B, Kim IM, Salazar N, Kim KS, Rockman HA. β-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress. Sci Signal 3(125):ra46, 2010.
293. Throm Quinlan AM, Sierad LN, Capulli AK, Firstenberg LE, Billiar KL. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6(8): e23272, 2011. doi:10.1371/journal.pone.0023272.
294. Tobita K, Garrison JB, Keller BB. Differential effects of cyclic stretch on embryonic ventricular cardiomyocyte and non-cardiomyocyte orientation. Edited by Clark EB, Nakazawa M, Takao A. Blackwell Futura Publishing:177-179, 2005.
295. Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291(4):H1829-37, 2006.
Cartilage
Articular chondrocytes
1. Agarwal S, Deschner J, Long P, Verma A, Hofman C, Evans CH, Piesco N. Role of NF-κB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum 50(11):3541-3548, 2004.
2. Carvalho RS, Yen EH, Suga DM. Glycosaminoglycan synthesis in the rat articular disk in response to mechanical stress. American Journal of Orthodontics & Dentofacial Orthopedics 107(4):401-410, 1995.
3. Doi H, Nishida K, Yorimitsu M, Komiyama T, Kadota Y, Tetsunaga T, Yoshida A, Kubota S, Takigawa M, Ozaki T. Interleukin-4 downregulates the cyclic tensile stress-induced matrix metalloproteinases-13 and cathepsin B expression by rat normal chondrocytes. Acta Med Okayama 62(2):119-126, 2008.
4. Dossumbekova A, Anghelina M, Madhavan S, He L, Quan N, Knobloch T, Agarwal S. Biomechanical signals inhibit IKK activity to attenuate NF-κB transcriptional activity in inflamed chondrocytes. Arthritis Rheum 56(10):3284–3296, 2007.
5. Fujisawa T, Hattori T, Takahashi K, Kuboki T, Yamashita A, Takigawa M. Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem 125(5):966-975, 1999.
6. Fukuda K, Asada S, Kumano F, Saitoh M, Otani K, Tanaka S. Cyclic tensile stretch on bovine articular chondrocytes inhibits protein kinase C activity. Journal of Laboratory and Clinical Medicine 130(2):209-215, 1997.
FLEXCELL? INTERNATIONAL CORPORATION
29
7. Gassner R, Buckley MJ, Georgescu H, Studer R, Stefanovich-Racic M, Piesco NP, Evans CH, Agarwal S. Cyclic tensile stress exerts antiinflammatory actions on chondrocytes by inhibiting inducible nitric oxide synthase. The Journal of Immunology 163:2187–2192, 1999.
8. Gassner R, Buckley MJ, Piesco N, Evans C, Agarwal S. Cytokine-induced nitric oxide production of joint cartilage cells in continuous passive movement. Anti-inflammatory effect of continuous passive movement on chondrocytes: in vitro study. Mund Kiefer Gesichtschir 4 Suppl 2:S479-S484, 2000. [Article in German]
9. Gassner RJ, Buckley MJ, Studer RK, Evans CH, Agarwal S. Interaction of strain and interleukin-1 in articular cartilage: effects on proteoglycan synthesis in chondrocytes. International Journal of Oral & Maxillofacial Surgery 29(5):389-394, 2000.
10. Holmvall K, Camper L, Johansson S, Kimura JH, Lundgren-Akerlund E. Chondrocyte and chondrosarcoma cell integrins with affinity for collagen type II and their response to mechanical stress. Exp Cell Res 221(2):496-503, 1995.
11. Honda K, Ohno S, Tanimoto K, Ijuin C, Tanaka N, Doi T, Kato Y, Tanne K. The effects of high magnitude cyclic tensile load on cartilage matrix metabolism in cultured chondrocytes. Eur J Cell Biol 79(9):601-609, 2000.
12. Huang J, Ballou LR, Hasty KA. Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene 404:101–109, 2007.
13. Huang J, Eckstein E, Hasty KA. Increased production of MMP-2 induced by cyclic tensile strain from porcine articular chondrocytes is not surpressed by iNOS and COX inhibitors [abstract]. Transactions of the 51st Annual Meeting Orthopaedic Research Society 30:1468, 2005
14. Huang J, Rho JY, Eckstein E, Hasty KA. Cyclic tension stress on porcine articular chondrocytes increases the production of nitric oxide and prostaglandin E2 in a coordinated manner [abstract]. Transactions of the 50th Annual Meeting Orthopaedic Research Society 29:825, 2004.
15. Huang J, Rho JY, Hasty KA. Cyclic tension stress regulates the metabolism of articular chondrocytes via different pathways [abstract]. Transactions of the 49th Annual Meeting Orthopaedic Research Society 28:640, 2003.
16. Iimoto S, Watanabe S, Takahashi T, Shimizu A, Yamamoto H. The influence of Celecoxib on matrix synthesis by chondrocytes under mechanical stress in vitro. Int J Mol Med 16(6):1083-1088, 2005.
17. Kawakita K, Nishiyama T, Fujishiro T, Hayashi S, Kanzaki N, Hashimoto S, Takebe K, Iwasa K, Sakata S, Nishida K, Kuroda R, Kurosaka M. Akt phosphorylation in human chondrocytes is regulated by p53R2 in response to mechanical stress. Osteoarthritis Cartilage 2012 Sep 3. pii: S1063-4584(12)00945-4. doi: 10.1016/j.joca.2012.08.022. [Epub ahead of print].
18. Lahiji K, Polotsky A, Hungerford DS, Frondoza CG. Cyclic strain stimulates proliferative capacity, α2 and α5 integrin, gene marker expression by human articular chondrocytes propagated on flexible silicone membranes. In Vitro Cell Dev Biol Anim 40(5-6):138-142, 2004.
19. Long P, Gassner R, Agarwal S. Tumor necrosis factor α-dependent proinflammatory gene induction is inhibited by cyclic tensile strain in articular chondrocytes in vitro. Arthritis Rheum 44(10):2311-9, 2001.
FLEXCELL? INTERNATIONAL CORPORATION
30
20. Madhavan S, Anghelina M, Rath-Deschner B, Wypasek E, John A, Deschner J, Piesco N, Agarwal S. Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes. Osteoarthritis Cartilage 14(10):1023-32, 2006. Epub 2006 May 30.
21. Marques MR, Hajjar D, Franchini KG, Moriscot AS, Santos MF. Mandibular appliance modulates condylar growth through integrins. J Dent Res 87(2):153-158, 2008.
22. Matsukawa M, Fukuda K, Yamasaki K, Yoshida K, Munakata H, Hamanishi C. Enhancement of nitric oxide and proteoglycan synthesis due to cyclic tensile strain loaded on chondrocytes attached to fibronectin. Inflamm Res 53(6):239-44, 2004.
23. Matsushita T, Fukuda K, Yamamoto H, Yamazaki K, Tomiyama T, Oh M, Hamanishi C. Effect of ebselen, a scavenger of reactive oxygen species, on chondrocyte metabolism. Mod Rheumatol 14(1):25-30, 2004.
24. Nishida K, Doi H, Shimizu A, Yorimitsu M, Takigawa M, Inoue H. The role of IL-4 in the control of mechanical stress-induced inflammatory mediators by rat chondrocytes [abstract]. Arthritis Res Ther 5(Suppl 3):57, 2003.
25. Rath B, Springorum HR, Deschner J, Luring C, Tingart M, Grifka J, Schaumburger J, Grassel S. Regulation of gene expression in articular cells is influenced by biomechanicalloading. Central European Journal of Medicine 2012, doi: 10.2478/s11536-012-0008-x.
26. Shelton JC, Bader DL, Lee DA. Mechanical conditioning influences the metabolic response of cell-seeded constructs. Cells Tissues Organs 175(3):140-150, 2003.
27. Shimizu A, Watanabe S, Iimoto S, Yamamoto H. Interleukin-4 protects matrix synthesis in chondrocytes under excessive mechanical stress in vitro. Modern Rheumatology 14(4):296-300, 2004.
28. Tanaka S, Hamanishi C, Kikuchi H, Fukuda K. Factors related to degradation of articular cartilage in osteoarthritis: a review. Semin Arthritis Rheum 27(6):392-399, 1998.
29. Thomas RS, Clarke AR, Duance VC, Blain EJ. Effects of Wnt3A and mechanical load on cartilage chondrocyte homeostasis. Arthritis Res Ther 13(6):R203, 2011. Epub 2011 Dec 9.
30. Xu HG, Zhang XH, Wang H, Liu P, Wang LT, Zuo CJ, Tong WX, Zhang XL. Intermittent cyclic mechanical tension-induced calcification and downregulation of ankh gene expression of end plate chondrocytes. Spine (Phila Pa 1976) 37(14):1192-1197, 2012.
31. Yamazaki K, Fukuda K, Matsukawa M, Hara F, Matsushita T, Yamamoto N, Yoshida K, Munakata H, Hamanishi C. Cyclic tensile stretch loaded on bovine chondrocytes causes depolymerization of hyaluronan: involvement of reactive oxygen species. Arthritis Rheum 48(11):3151-3158, 2003.
Other cartilage cells
32. Agarwal S, Long P, Gassner R, Piesco NP, Buckley MJ. Cyclic tensile strain suppresses catabolic effects of interleukin-1β in fibrochondrocytes from the temporomandibular joint. Arthritis Rheum 44(3):608-617, 2001.
33. Chano T, Tanaka M, Hukuda S, Saeki Y. Mechanical stress induces the expression of high molecular mass heat shock protein in human chondrocytic cell line CS-OKB. Osteoarthritis Cartilage 8(2):115-119, 2000.
FLEXCELL? INTERNATIONAL CORPORATION
31
34. Deschner J, Rath-Deschner B, Agarwal S. Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthritis Cartilage 14(3):264-272, 2006. Epub 2005 Nov 14.
35. Deschner J, Rath-Deschner B, Wypasek E, Anghelina M, Sjostrom D, Agarwal S. Biomechanical strain regulates TNFR2 but not TNFR1 in TMJ cells. J Biomech 40(7):1541-1549, 2007. Epub 2006 Oct 16.
36. Madhavan S, Anghelina M, Sjostrom D, Dossumbekova A, Guttridge DC, Agarwal S. Biomechanical signals suppress TAK1 activation to inhibit NF-κB transcriptional activation in fibrochondrocytes. J Immunol 179(9):6246-6254, 2007.
37. Ohno S, Tanaka N, Ueki M, Honda K, Tanimoto K, Yoneno K, Ohno-Nakahara M, Fujimoto K, Kato Y, Tanne K. Mechanical regulation of terminal chondrocyte differentiation via RGD-CAP/β ig-h3 induced by TGF-β. Connect Tissue Res 46(4-5):227-234, 2005.
38. Rath B, Springorum HR, Deschner J, Luring C, Tingart M, Grifka J, Schaumburger J, Grassel S. Regulation of gene expression in articular cells is influenced by biomechanicalloading. Central European Journal of Medicine 2012, doi: 10.2478/s11536-012-0008-x.
39. Ru-song Z, Zhu-li Y, Yan-xiao D, Chong-ying Y, Ping-ping J, Xiao Y. Effect of tensile stress on type II collagen and aggrecan expression in rat condylar chondrocytes. Chinese Journal of Tissue Engineering Research 16(20): 3649-3653, 2012.
40. Tanaka N, Ohno S, Honda K, Tanimoto K, Doi T, Ohno-Nakahara M, Tafolla E, Kapila S, Tanne K. Cyclic mechanical strain regulates the PTHrP expression in cultured chondrocytes via activation of the Ca2+ channel. J Dent Res 84(1):64-68, 2005.
41. Tanimoto K, Kamiya T, Tanne Y, Kunimatsu R, Mitsuyoshi T, Tanaka E, Tanne K. Superficial zone protein affects boundary lubrication on the surface of mandibular condylar cartilage. Cell Tissue Res 344(2):333-340, 2011. Epub 2011 Apr 12.
42. Ueki M, Tanaka N, Tanimoto K, Nishio C, Honda K, Lin YY, Tanne Y, Ohkuma S, Kamiya T, Tanaka E, Tanne K. The effect of mechanical loading on the metabolism of growth plate chondrocytes. Ann Biomed Eng 36(5):793-800, 2008. Epub 2008 Feb 16.
Dermal Fibroblasts
1. Kessler D, Dethlefsen S, Haase I, Plomann M, Hirche F, Krieg T, Eckes B. Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype. J Biol Chem 276(39):36575-36585, 2001.
2. Meltzer KR, Cao TV, Schad JF, King H, Stoll ST, Standley PR. In vitro modeling of repetitive motion injury and myofascial release. J Bodyw Mov Ther 14(2):162-171, 2010. Epub 2010 Jan 29.
3. Meltzer KR, Standley PR. Modeled repetitive motion strain and indirect osteopathic manipulative techniques in regulation of human fibroblast proliferation and interleukin secretion. J Am Osteopath Assoc 107(12):527-536, 2007.
4. Parsons M, Kessler E, Laurent GJ, Brown RA, Bishop JE. Mechanical load enhances procollagen processing in dermal fibroblasts by regulating levels of procollagen C-proteinase. Exp Cell Res 252(2):319-331, 1999.
5. Shelton JC, Bader DL, Lee DA. Mechanical conditioning influences the metabolic response of cell-seeded constructs. Cells Tissues Organs 175(3):140-150, 2003.
FLEXCELL? INTERNATIONAL CORPORATION
32
Endothelial cells
Cardiovascular endothelial cells
See page 13
Pulmonary endothelial cells
See page 46
Other endothelial cells
1. Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M, Haas TL. HIF-1α and HIF-2α play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J Physiol 583(Pt 2):753-766, 2007. Epub 2007 Jul 12.
2. Milkiewicz M, Mohammadzadeh F, Ispanovic E, Gee E, Haas TL. Static strain stimulates expression of matrix metalloproteinase-2 and VEGF in microvascular endothelium via JNK- and ERK-dependent pathways. J Cell Biochem 100(3):750-761, 2007.
3. Suzuma I, Hata Y, Clermont A, Pokras F, Rook SL, Suzuma K, Feener EP, Aiello L. Cyclic stretch and hypertension induce retinal expression of vascular endothelial growth factor and vascular endothelial growth factor receptor–2: potential mechanisms for exacerbation of diabetic retinopathy by hypertension. Diabetes 50:444–454, 2001.
4. Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates and human endothelial cells. BMC Microbiol 10:78, 2010.
5. Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y, Madri JA, Sumpio BE. Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J Biol Chem 277(38):34808-34814, 2002.
Epithelial Cells
Caco-2 intenstinal epithelial cells
1. Basson MD, Li GD, Hong F, Han O, Sumpio BE. Amplitude-dependent modulation of brush border enzymes and proliferation by cyclic strain in human intestinal Caco-2 monolayers. J Cell Physiol 168(2):476-488, 1996.
2. Chaturvedi LS, Marsh HM, Shang X, Zheng Y, Basson MD. Repetitive deformation activates focal adhesion kinase and ERK mitogenic signals in human Caco-2 intestinal epithelial cells through Src and Rac1. J Biol Chem 282(1):14-28, 2007.
3. Chaturvedi LS, Gayer CP, Marsh HM, Basson MD. Repetitive deformation activates Src-independent FAK-dependent ERK motogenic signals in human Caco-2 intestinal epithelial cells. Am J Physiol Cell Physiol 294:C1350–C1361, 2008.
4. Craig DH, Zhang J, Basson MD.Cytoskeletal signaling by way of α-actinin-1 mediates ERK1/2 activation by repetitive deformation in human Caco2 intestinal epithelial cells. Am J Surg 194(5):618-622, 2007.
5. Gayer CP, Chaturvedi LS, Wang S, Craig DH, Flanigan T, Basson MD. Strain-induced proliferation requires the phosphatidylinositol 3-kinase/AKT/glycogen synthase kinase pathway. J Biol Chem 284:2001-2011, 2009.
FLEXCELL? INTERNATIONAL CORPORATION
33
6. Gayer CP, Chaturvedi LS, Wang S, Alston B, Flanigan TL, Basson MD. Delineating the signals by which repetitive deformation stimulates intestinal epithelial migration across fibronectin. Am J Physiol Gastrointest Liver Physiol 296(4):G876-G885, 2009. Epub 2009 Jan 29.
7. Han O, Li GD, Sumpio BE, Basson MD. Strain induces Caco-2 intestinal epithelial proliferation and differentiation via PKC and tyrosine kinase signals. Am J Physiol 275(3 Pt 1):G534-G541, 1998.
8. Han O, Sumpio BE, Basson MD. Mechanical strain rapidly redistributes tyrosine phosphorylated proteins in human intestinal Caco-2 cells. Biochem Biophys Res Commun 250(3):668-673, 1998.
9. Li W, Duzgun A, Sumpio BE, Basson MD. Integrin and FAK-mediated MAPK activation is required for cyclic strain mitogenic effects in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 280(1):G75-G87, 2001.
10. Zhang J, Li W, Sanders MA, Sumpio BE, Panja A, Basson MD. Regulation of the intestinal epithelial response to cyclic strain by extracellular matrix proteins. FASEB J 17(8):926-928, 2003. Epub 2003 Mar 5.
11. Zhang J, Li W, Sumpio BE, Basson MD. Fibronectin blocks p38 and jnk activation by cyclic strain in Caco-2 cells. Biochem Biophys Res Commun 306(3):746-749, 2003.
Eye epithelial cells
See page 34
Gastric epithelial cells
12. Osada T, Iijima K, Tanaka H, Hirose M, Yamamoto J, Watanabe S. Effect of temperature and mechanical strain on gastric epithelial cell line GSM06 wound restoration in vitro. J Gastroenterol Hepatol 14(5):489-494, 1999.
Pulmonary epithelial cells
See page 47
Renal epithelial cells
See page 41
Other epithelial cells
13. Amura CR, Brodsky KS, Gitomer B, McFann K, Lazennec G, Nichols MT, Jani A, Schrier RW, Doctor RB. CXCR2 agonists in ADPKD liver cyst fluids promote cell proliferation. Am J Physiol Cell Physiol 294(3):C786-C796, 2008. Epub 2008 Jan 16.
14. Haku K, Muramatsu T, Hara A, Kikuchi A, Hashimoto S, Inoue T, Shimono M. Epithelial cell rests of Malassez modulate cell proliferation, differentiation and apoptosis via gap junctional communication under mechanical stretching in vitro. Bull Tokyo Dent Coll 52(4):173-182, 2011.
15. Hegarty PK, Watson RW, Coffey RN, Webber MM, Fitzpatrick JM. Effects of cyclic stretch on prostatic cells in culture. J Urol 168(5):2291-2295, 2002.
16. Koshihara T, Matsuzaka K, Sato T, Inoue T. Effect of stretching force on the cells of epithelial rests of malassez in vitro. Int J Dent 2010:458408, 2010. Epub 2010 Apr 12.
FLEXCELL? INTERNATIONAL CORPORATION
34
17. Mohan AR, Sooranna SR, Lindstrom TM, Johnson MR, Bennett PR. The effect of mechanical stretch on cyclooxygenase type 2 expression and activator protein-1 and nuclear factor-κB activity in human amnion cells. Endocrinology 148(4):1850-1857, 2007. Epub 2007 Jan 11.
Eye
1. Fujikura H, Seko Y, Tokoro T, Mochizuki M, Shimokawa H. Involvement of mechanical stretch in the gelatinolytic activity of the fibrous sclera of chicks, in vitro. Japanese Journal of Ophthalmology 46(1):24-30, 2002.
2. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor-β and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079, 2009. Epub 2008 Nov 14.
3. Kirwan RP, Crean JK, Fenerty CH, Clark AF, O’Brien CJ. Effect of cyclical mechanical stretch and exogenous transforming growth factor-β1 on matrix metalloproteinase-2 activity in lamina cribrosa cells from the human optic nerve head. J Glaucoma 13(4):327-334, 2004.
4. Kirwan RP, Fenerty CH, Crean J, Wordinger RJ, Clark AF, O’Brien CJ. Influence of cyclical mechanical strain on extracellular matrix gene expression in human lamina cribrosa cells in vitro. Mol Vis 11:798-810, 2005.
5. Quill B, Docherty NG, Clark AF, O’Brien CJ. The effect of graded cyclic stretching on extracellular matrix-related gene expression profiles in cultured primary human lamina cribrosa cells. Invest Ophthalmol Vis Sci 52(3):1908-1915, 2011.
6. Shelton L, Rada JS. Effects of cyclic mechanical stretch on extracellular matrix synthesis by human scleral fibroblasts. Exp Eye Res 84(2):314-322, 2007. Epub 2006 Nov 21.
7. Suzuma I, Hata Y, Clermont A, Pokras F, Rook SL, Suzuma K, Feener EP, Aiello L. Cyclic stretch and hypertension induce retinal expression of vascular endothelial growth factor and vascular endothelial growth factor receptor–2: potential mechanisms for exacerbation of diabetic retinopathy by hypertension. Diabetes 50:444–454, 2001.
8. Suzuma I, Suzuma K, Takagi H, Kaneto H, Aiello L, Honda Y. 1P-0151 Cyclic stretch induced reactive oxygen species (ROS) enhances apoptosis in porcine retinal pericytes (PRPC) through JNK/SAPK activation [abstract]. Atherosclerosis Supplements 4(2):53, 2003.
9. Suzuma I, Suzuma K, Ueki K, Hata Y, Feener EP, King GL, Aiello LP. Stretch-induced retinal vascular endothelial growth factor expression is mediated by phosphatidylinositol 3-kinase and protein kinase C (PKC)-zeta but not by stretch-induced ERK1/2, Akt, Ras, or classical/novel PKC pathways. J Biol Chem 277(2):1047-1057, 2002.
Eye epithelial cells
10. Oh JY, Jung KA, Kim MK, Wee WR, Lee JH. Effect of mechanical strain on human limbal epithelial cells in vitro. Curr Eye Res 31(12):1015-20, 2006.
11. Seko Y, Seko Y, Fujikura H, Pang J, Tokoro T, Shimokawa H. Induction of vascular endothelial growth factor after application of mechanical stress to retinal pigment epithelium of the rat in vitro. Invest Ophthalmol Vis Sci 40:3287–3291, 1999.
FLEXCELL? INTERNATIONAL CORPORATION
35
Trabecular meshwork cells
12. Aga M, Bradley JM, Keller KE, Kelley MJ, Acott TS. Specialized podosome- or invadopodia-like structures (PILS) for focal trabecular meshwork extracellular matrix turnover. Invest Ophthalmol Vis Sci 49(12):5353-5365, 2008. Epub 2008 Jul 18.
13. Baetz NW, Hoffman EA, Yool AJ, Stamer WD. Role of aquaporin-1 in trabecular meshwork cell homeostasis during mechanical strain. Exp Eye Res 89(1):95-100, 2009. Epub 2009 Mar 4.
14. Chow J, Liton PB, Luna C, Wong F, Gonzalez P. Effect of cellular senescence on the P2Y-receptor mediated calcium response in trabecular meshwork cells. Mol Vis 13:1926-1933, 2007.
15. Chudgar SM, Deng P, Maddala R, Epstein DL, Rao PV. Regulation of connective tissue growth factor expression in the aqueous humor outflow pathway. Mol Vis 12:1117-1126, 2006.
16. Iyer P, Lalane R 3rd, Morris C, Challa P, Vann R, Rao PV. Autotaxin-lysophosphatidic Acid axis is a novel molecular target for lowering intraocular pressure. PLoS One 7(8):e42627, 2012. Epub 2012 Aug 20.
17. Liton PB, Liu X, Challa P, Epstein DL, Gonzalez P. Induction of TGF-β1 in the trabecular meshwork under cyclic mechanical stress. J Cell Physiol 205(3):364-71, 2005.
18. Liton PB, Li G, Luna C, Gonzalez P, Epstein DL. Cross-talk between TGF-β1 and IL-6 in human trabecular meshwork cells. Mol Vis 15:326-334, 2009. Epub 2009 Feb 11.
19. Luna C, Li G, Liton PB, Epstein DL, Gonzalez P. Alterations in gene expression induced by cyclic mechanical stress in trabecular meshwork cells. Mol Vis 15:534-544, 2009. Epub 2009 Mar 11.
20. Luna C, Li G, Qiu J, Epstein DL, Gonzalez P. MicroRNA-24 regulates the processing of latent TGFβ1 during cyclic mechanical stress in human trabecular meshwork cells through direct targeting of FURIN. J Cell Physiol 226(5):1407-1414, 2011. doi: 10.1002/jcp.22476.
21. WuDunn D. The effect of mechanical strain on matrix metalloproteinase production by bovine trabecular meshwork cells. Curr Eye Res 22(5):394-397, 2001.
Gingival Fibroblasts
1. Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel H, Tenenbaum H. Expression of mRNAs encoding for a and B integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res 79(9):1712-1716, 2000.
2. Danciu TE, Gagari E, Adam RM, Damoulis PD, Freeman MR. Mechanical strain delivers anti-apoptotic and proliferative signals to gingival fibroblasts. J Dent Res 83(8):596-601, 2004.
3. Grunheid T, Zentner A. Extracellular matrix synthesis, proliferation and death in mechanically stimulated human gingival fibroblasts in vitro. Clin Oral Investig 9(2):124-130, 2005.
4. Guo F, Carter DE, Leask A. Mechanical tension increases CCN2/CTGF expression and proliferation in gingival fibroblasts via a TGFβ-dependent mechanism. PLoS One 6(5):e19756, 2011. Epub 2011 May 17.
FLEXCELL? INTERNATIONAL CORPORATION
36
5. Kimoto S, Matsuzawa M, Matsubara S, Komatsu T, Uchimura N, Kawase T, Saito S. Cytokine secretion of periodontal ligament fibroblasts derived from human deciduous teeth: effect of mechanical stress on the secretion of transforming growth factor-β1 and macrophage colony stimulating factor. J Periodontal Res 34(5):235-243, 1999.
6. Morimoto T, Nishihira J, Kohgo T. Immunohistochemical localization of macrophage migration inhibitory factor (MIF) in human gingival tissue and its pathophysiological functions. Histochem Cell Biol 120(4):293-298, 2003.
7. Yoshino H, Morita I, Murota SI, Ishikawa I. Mechanical stress induces production of angiogenic regulators in cultured human gingival and periodontal ligament fibroblasts. J Periodontal Res 38(4):405-410, 2003.
Intervertebral Disc
1. Cho H, Seth A, Warmbold J, Robertson JT, Hasty KA. Aging affects response to cyclic tensile stretch: paradigm for intervertebral disc degeneration. Eur Cell Mater 22:137-45; discussion 145-6, 2011.
2. Gilbert HT, Hoyland JA, Freemont AJ, Millward-Sadler SJ. The involvement of interleukin-1 and interleukin-4 in the response of human annulus fibrosus cells to cyclic tensile strain: an altered mechanotransduction pathway with degeneration. Arthritis Res Ther 13(1):R8, 2011.
3. Gilbert HT, Hoyland JA, Millward-Sadler SJ. The response of human anulus fibrosus cells to cyclic tensile strain is frequency-dependent and altered with disc degeneration. Arthritis Rheum 62(11):3385-3394, 2010. doi: 10.1002/art.27643.
4. Matsumoto T, Kawakami M, Kuribayashi K, Takenaka T, Tamaki T. Cyclic mechanical stretch stress increases the growth rate and collagen synthesis of nucleus pulposus cells in vitro. Spine 24(4):315-319, 1999.
5. Miyamoto H, Doita M, Nishida K, Yamamoto T, Sumi M, Kurosaka M. Effects of cyclic mechanical stress on the production of inflammatory agents by nucleus pulposus and anulus fibrosus derived cells in vitro. Spine 31(1):4-9, 2006.
6. Rannou F, Richette P, Benallaoua M, Francois M, Genries V, Korwin-Zmijowska C, Revel M, Corvol M, Poiraudeau S. Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cells through production of nitrite oxide. J Cell Biochem 90(1):148-157, 2003.
7. Rannou F, Poiraudeau S, Foltz V, Boiteux M, Corvol M, Revel M. Monolayer anulus fibrosus cell cultures in a mechanically active environment: local culture condition adaptations and cell phenotype study. J Lab Clin Med 136(5):412-421, 2000.
8. Zhang YH, Zhao CQ, Jiang LS, Dai LY. Lentiviral shRNA silencing of CHOP inhibits apoptosis induced by cyclic stretch in rat annular cells and attenuates disc degeneration in the rats. Apoptosis 16(6):594-605, 2011.
9. Zhang Y, Zhao C, Jiang L, Dai L. Cyclic stretch-induced apoptosis in rat annulus fibrosus cells is mediated in part by endoplasmic reticulum stress through nitric oxide production. European Spine Journal 20(8):1233-1243, 2011.
FLEXCELL? INTERNATIONAL CORPORATION
37
Keratinocytes
1. Choi K, Mollapour E, Shears SB. Signal transduction during environmental stress: InsP8 operates within highly restricted contexts. Cellular Signalling 17(12):1533-1541, 2005.
2. Rouse JG, Haslauer CM, Loboa EG, Monteiro-Riviere NA. Cyclic tensile strain increases interactions between human epidermal keratinocytes and quantum dot nanoparticles. Toxicology in Vitro 22(2):491-497, 2008.
3. Russell D, Andrews PD, James J, Lane EB. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J Cell Sci 117(Pt 22):5233-5243, 2004.
4. Takei T, Han O, Ikeda M, Male P, Mills I, Sumpio BE. Cyclic strain stimulates isoform-specific PKC activation and translocation in cultured human keratinocytes. J Cell Biochem 67(3):327-337, 1997.
5. Takei T, Kito H, Du W, Mills I, Sumpio BE. Induction of interleukin (IL)-1α and β gene expression in human keratinocytes exposed to repetitive strain: their role in strain-induced keratinocyte proliferation and morphological change. J Cell Biochem 69(2):95-103, 1998.
6. Takei T, Rivas-Gotz C, Delling CA, Koo JT, Mills I, McCarthy TL, Centrella M, Sumpio BE. Effect of strain on human keratinocytes in vitro. J Cell Physiol 173(1):64-72, 1997.
Kidney
1. Alexander LD, Alagarsamy S, Douglas JG. Cyclic stretch-induced cPLA2 mediates ERK 1/2 signaling in rabbit proximal tubule cells. Kidney International 65(2):551-563, 2004.
2. Barutta F, Pinach S, Giunti S, Vittone F, Forbes JM, Chiarle R, Arnstein M, Perin PC, Camussi G, Cooper ME, Gruden G. Heat shock protein expression in diabetic nephropathy. Am J Physiol Renal Physiol 295(6):F1817-F1824, 2008. Epub 2008 Oct 15.
3. Carey RM, McGrath HE, Pentz ES, Gomez RA, Barrett PQ. Biomechanical coupling in renin-releasing cells. J Clin Invest 100(6):1566-1574, 1997.
4. Diamond JR, Kreisberg R, Evans R, Nguyen TA, Ricardo SD. Regulation of proximal tubular osteopontin in experimental hydronephrosis in the rat. Kidney International 54(5):1501-1509, 1998.
5. Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P, Pichler R, Griffin S, Couser WG, Shankland SJ. Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney International 65(1):30-39, 2004.
6. Durvasula RV, Shankland SJ. Mechanical strain increases SPARC levels in podocytes: implications for glomerulosclerosis. Am J Physiol Renal Physiol 289(3):F577-F584, 2005.
7. El Chaar M, Attia E, Chen J, Hannafin J, Poppas DP, Felsen D. Cyclooxygenase-2 inhibitor decreases extracellular matrix synthesis in stretched renal fibroblasts. Nephron Exp Nephrol 100(4):e150-155, 2005.
FLEXCELL? INTERNATIONAL CORPORATION
38
8. Giunti S, Pinach S, Arnaldi L, Viberti G, Perin PC, Camussi G, Gruden G. The MCP-1/CCR2 system has direct proinflammatory effects in human mesangial cells. Kidney Int 69(5):856-863, 2006.
9. Hegarty NJ, Watson RW, Young LS, O’Neill AJ, Brady HR, Fitzpatrick JM. Cytoprotective effects of nitrates in a cellular model of hydronephrosis. Kidney International 62(1):70-77, 2002.
10. Kiley SC, Chevalier RL. Species differences in renal Src activity direct EGF receptor regulation in life or death response to EGF. Am J Physiol Renal Physiol 293(3):F895-F903, 2007. Epub 2007 Jul 11.
11. Kiley SC, Thornhill BA, Tang SS, Ingelfinger JR, Chevalier RL. Growth factor-mediated phosphorylation of proapoptotic BAD reduces tubule cell death in vitro and in vivo. Kidney International 63(1):33-42, 2003.
12. Maier S, Lutz R, Gelman L, Sarasa-Renedo A, Schenk S, Grashoff C, Chiquet M. Tenascin-C induction by cyclic strain requires integrin-linked kinase. Biochim Biophys Acta 1783(6):1150-1162, 2008. Epub 2008 Jan 26.
13. Martineau LC, McVeigh LI, Jasmin BJ, Kennedy CR. p38 MAP kinase mediates mechanically induced COX-2 and PG EP4 receptor expression in podocytes: implications for the actin cytoskeleton. Am J Physiol Renal Physiol 286(4):F693-F701, 2004.
14. Miyajima A, Chen J, Lawrence C, Ledbetter S, Soslow RA, Stern J, Jha S, Pigato J, Lemer ML, Poppas DP, Vaughan ED, Felsen D. Antibody to transforming growth factor-β ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney International 58(6):2301-2313, 2000.
15. Miyajima A, Chen J, Poppas DP, Vaughan ED, Felsen D. Role of nitric oxide in renal tubular apoptosis of unilateral ureteral obstruction. Kidney International 59(4):1290-1303, 2001.
16. Morgera S, Schlenstedt J, Hambach P, Giessing M, Deger S, Hocher B, Neumayer HH. Combined ETA/ETB receptor blockade of human peritoneal mesothelial cells inhibits collagen I RNA synthesis. Kidney International 64:2033–2040, 2003
17. Nguyen HT, Bride SH, Badawy AB, Adam RM, Lin J, Orsola A, Guthrie PD, Freeman MR, Peters CA. Heparin-binding EGF-like growth factor is up-regulated in the obstructed kidney in a cell- and region-specific manner and acts to inhibit apoptosis. American Journal of Pathology 156:889-898, 2000.
18. Petermann AT, Hiromura K, Blonski M, Pippin J, Monkawa T, Durvasula R, Couser WG, Shankland SJ. Mechanical stress reduces podocyte proliferation in vitro. Kidney International 61(1):40-50, 2002.
19. Petermann AT, Pippin J, Durvasula R, Pichler R, Hiromura K, Monkawa T, Couser WG, Shankland SJ. Mechanical stretch induces podocyte hypertrophy in vitro. Kidney International 67(1):157-166, 2005.
20. Ricardo SD, Ding G, Eufemio M, Diamond JR. Antioxidant expression in experimental hydronephrosis: role of mechanical stretch and growth factors. Am J Physiol Renal Physiol 272:F789-F798, 1997.
21. Ricardo SD, Franzoni DF, Roesener CD, Crisman JM, Diamond JR. Angiotensinogen and AT(1) antisense inhibition of osteopontin translation in rat proximal tubular cells. Am J Physiol Renal Physiol 278(5):F708-F716, 2000.
FLEXCELL? INTERNATIONAL CORPORATION
39
22. Ryan MJ, Black TA, Gross KW, Hajduczok G. Cyclic mechanical distension regulates renin gene transcription in As4.1 cells. Am J Physiol Endocrinol Metab 279(4):E830-E837, 2000.
23. Ryan MJ, Gross KW, Hajduczok G. Calcium-dependent activation of phospholipase C by mechanical distension in renin-expressing As4.1 cells. Am J Physiol Endocrinol Metab 279(4):E823-E829, 2000.
24. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112(10):1486-1494, 2003.
25. Sussman AN, Sun T, Krofft RM, Durvasula RV. SPARC accelerates disease progression in experimental crescentic glomerulonephritis. Am J Pathol 174(5):1827-1836, 2009. Epub 2009 Mar 26.
26. Tanner GA, McQuillan PF, Maxwell MR, Keck JK, McAteer JA. An in vitro test of the cell stretch-proliferation hypothesis of renal cyst enlargement J Am Soc Nephrol 6(4):1230-1241, 1995.
Mesangial cells
27. Akai Y, Homma T, Burns KD, Yasuda T, Badr KF, Harris RC. Mechanical stretch/relaxation of cultured rat mesangial cells induces protooncogenes and cyclooxygenase. Am J Physiol Cell Physiol 267(2):C482-C490, 1994.
28. Barutta F, Pinach S, Giunti S, Vittone F, Forbes JM, Chiarle R, Arnstein M, Perin PC, Camussi G, Cooper ME, Gruden G. Heat shock protein expression in diabetic nephropathy. Am J Physiol Renal Physiol 295(6):F1817-F1824, 2008. Epub 2008 Oct 15.
29. Clarkson MR, Murphy M, Gupta S, Lambe T, Mackenzie HS, Godson C, Martin F, Brady HR. High glucose-altered gene expression in mesangial cells. Actin-regulatory protein gene expression is triggered by oxidative stress and cytoskeletal disassembly. J Biol Chem 277(12):9707-9712, 2002.
30. Cortes P, Zhao X, Riser BL, Narins RG. Role of glomerular mechanical strain in the pathogenesis of diabetic nephropathy. Kidney International 51(1):57-68, 1997.
31. Dlugosz JA, Munk S, Kapor-Drezgic J, Goldberg HJ, Fantus IG, Scholey JW, Whiteside CI. Stretch-induced mesangial cell ERK1/ERK2 activation is enhanced in high glucose by decreased dephosphorylation. Am J Physiol Renal Physiol 279:688-697, 2000.
32. Gruden G, Araf S, Zonca S, Burt D, Thomas S, Gnudi L, Viberti G. IGF-I induces vascular endothelial growth factor in human mesangial cells via a Src-dependent mechanism. Kidney International 63(4):1249-1255, 2003.
33. Gruden G, Setti G, Hayward A, Sugden D, Duggan S, Burt D, Buckingham RE, Gnudi L, Viberti G. Mechanical stretch induces monocyte chemoattractant activity via an NF-κB-dependent monocyte chemoattractant protein-1-mediated pathway in human mesangial cells: inhibition by rosiglitazone. J Am Soc Nephrol 16(3):688-96, 2005.
34. Gruden G, Thomas S, Burt D, Lane S, Chusney G, Sacks S, Viberti G. Mechanical stretch induces vascular permeability factor in human mesangial cells: mechanisms of signal transduction. Proc Natl Acad Sci U S A 94(22):12112-12116, 1997.
35. Gruden G, Thomas S, Burt D, Zhou W, Chusney G, Gnudi L, Viberti G. Interaction of angiotensin II and mechanical stretch on vascular endothelial growth factor production by human mesangial cells. J Am Soc Nephrol 10(4):730-737, 1999.
FLEXCELL? INTERNATIONAL CORPORATION
40
36. Hayashi Y, Katoh T, Asano K, Onozaki A, Sakurai K, Asahi K, Nakayama M, Watanabe T. Mechanical stretch down-regulates expression of the Smad6 gene in cultured rat mesangial cells. Clin Exp Nephrol 16(5):690-696, 2012. doi: 10.1007/s10157-012-0630-6. Epub 2012 May 12
37. Hirakata M, Kaname S, Chung UG, Joki N, Hori Y, Noda M, Takuwa Y, Okazaki T, Fujita T, Katoh T, Kurokawa K. Tyrosine kinase dependent expression of TGF-β induced by stretch in mesangial cells. Kidney Int 51(4):1028-36, 1997.
38. Homma T, Akai Y, Burns KD, Harris RC. Activation of S6 kinase by repeated cycles of stretching and relaxation in rat glomerular mesangial cells. Evidence for involvement of protein kinase C. J Biol Chem 267(32):23129-23135, 1992.
39. Hori Y, Katoh T, Hirakata M, Joki N, Kaname S, Fukagawa M, Okuda T, Ohashi H, Fujita T, Miyazono K, Kurokawa K. Anti-latent TGF- binding protein-1 antibody or synthetic oligopeptides inhibit extracellular matrix expression induced by stretch in cultured rat mesangial cells. Kidney Int 53:1616-1625, 1998.
40. Ingram AJ, James L, Cai L, Thai K, Ly H, Scholey JW. NO inhibits stretch-induced MAPK activity by cytoskeletal disruption. J Biol Chem 275(51):40301-40306, 2000.
41. Ingram AJ, James L, Ly H, Thai K, Cai L, Scholey JW. Nitric oxide modulates stretch activation of mitogen-activated protein kinases in mesangial cells. Kidney International 58(3):1067-1077, 2000.
42. Ingram AJ, James L, Ly H, Thai K, Scholey JW. Stretch activation of Jun N-terminal kinase/stress-activated protein kinase in mesangial cells. Kidney International 58(4):1431-1439, 2000.
43. Ingram AJ, James L, Thai K, Ly H, Cai L, Scholey JW. Nitric oxide modulates mechanical strain-induced activation of p38 MAPK in mesangial cells. Am J Physiol Renal Physiol 279(2):F243-F251, 2000.
44. Ingram AJ, Ly H, Thai K, Kang M, Scholey JW. Activation of mesangial cell signaling cascades in response to mechanical strain. Kidney International 55(2):476-485, 1999.
45. Ingram AJ, Ly H, Thai K, Kang MJ, Scholey JW. Mesangial cell signaling cascades in response to mechanical strain and glucose. Kidney International 56(5):1721-1728, 1999.
46. Krepinsky J, Ingram AJ, James L, Ly H, Thai K, Cattran DC, Miller JA, Scholey JW. 17β-Estradiol modulates mechanical strain-induced MAPK activation in mesangial cells. J Biol Chem 277(11):9387-9394, 2002.
47. Krepinsky JC, Ingram AJ, Tang D, Wu D, Liu L, Scholey JW. Nitric oxide inhibits stretch-induced MAPK activation in mesangial cells through RhoA inactivation. J Am Soc Nephrol 14(11):2790-2800, 2003.
48. Krepinsky JC, Li Y, Chang Y, Liu L, Peng F, Wu D, Tang D, Scholey J, Ingram AJ. Akt mediates mechanical strain-induced collagen production by mesangial cells. J Am Soc Nephrol 16(6):1661-1672, 2005.
49. McMahon R, Murphy M, Clarkson M, Taal M, Mackenzie HS, Godson C, Martin F, Brady HR. IHG-2, a mesangial cell gene induced by high glucose, is human gremlin. Regulation by extracellular glucose concentration, cyclic mechanical strain, and transforming growth factor-b1. J Biol Chem 275(14):9901-9904, 2000.
FLEXCELL? INTERNATIONAL CORPORATION
41
50. Peng F, Wu D, Ingram AJ, Zhang B, Gao B, Krepinsky JC. RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J Am Soc Nephrol 18(1):189-198, 2007. Epub 2006 Nov 22.
51. Riser BL, Cortes P, Yee J, Sharba AK, Asano K, Rodriguez-Barbero A, Narins RG. Mechanical strain- and high glucose-induced alterations in mesangial cell collagen metabolism: role of TGF-β. J Am Soc Nephrol 9:827-836, 1998.
52. Riser BL, Denichilo M, Cortes P, Baker C, Grondin JM, Yee J, Narins RG. Regulation of connective tissue growth factor activity in cultured rat mesangial cells and its expression in experimental diabetic glomerulosclerosis. J Am Soc Nephrol 11(1):25-38, 2000.
53. Riser BL, Ladson-Wofford S, Sharba A, Cortes P, Drake K, Guerin CJ, Yee J, Choi ME, Segarini PR, Narins RG. TGF-β receptor expression and binding in rat mesangial cells: Modulation by glucose and cyclic mechanical strain. Kidney International 56(2):428-439, 1999.
54. Riser BL, Varani J, Cortes P, Yee J, Dame M, Sharba AK. Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis. Am J Pathol 158(1):11-17, 2001.
55. Yasuda T, Kondo S, Homma T, Harris RC. Regulation of extracellular matrix by mechanical stress in rat glomerular mesangial cells. J Clin Invest 98(9):1991-2000, 1996.
56. Yasuda T, Kondo S, Owada S, Ishida M, Harris RC. Integrins and the cytoskeleton: focal adhesion kinase and paxillin. Nephrol Dial Transplant 14(Suppl 1):58-60, 1999.
57. Yatabe J, Sanada H, Yatabe MS, Hashimoto S, Yoneda M, Felder RA, Jose PA, Watanabe T. Angiotensin II type 1 receptor blocker attenuates the activation of ERK and NADPH oxidase by mechanical strain in mesangial cells in the absence of angiotensin II. Am J Physiol Renal Physiol 296(5):F1052-F1060, 2009. Epub 2009 Mar 4.
Renal epithelial cells
58. Cachat F, Lange-Sperandio B, Chang AY, Kiley SC, Thornhill BA, Forbes MS, Chevalier RL. Ureteral obstruction in neonatal mice elicits segment-specific tubular cell responses leading to nephron loss. Kidney International 63(2):564-575, 2003.
59. Kiley SC, Thornhill BA, Belyea BC, Neale K, Forbes MS, Luetteke NC, Lee DC, Chevalier RL. Epidermal growth factor potentiates renal cell death in hydronephrotic neonatal mice, but cell survival in rats. Kidney International 68(2):504-514, 2005.
60. Nguyen HT, Hsieh MH, Gaborro A, Tinloy B, Phillips C, Adam RM. JNK/SAPK and p38 SAPK-2 mediate mechanical stretch-induced apoptosis via caspase-3 and -9 in NRK-52E renal epithelial cells. Nephron Exp Nephrol 102(2):e49-61, 2006.
61. Power RE, Doyle BT, Higgins D, Brady HR, Fitzpatrick JM, Watson RW. Mechanical deformation induced apoptosis in human proximal renal tubular epithelial cells is caspase dependent. J Urol 171(1):457-61, 2004.
62. Sato M, Muragaki Y, Saika S, Roberts AB, Ooshima A. Targeted disruption of TGF- β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J Clin Invest 112(10):1486-1494, 2003.
FLEXCELL? INTERNATIONAL CORPORATION
42
Ligament
Periodontal ligament
1. Agarwal S, Long P, Seyedain A, Piesco N, Shree A, Gassner R. A central role for the nuclear factor-κB pathway in anti-inflammatory and proinflammatory actions of mechanical strain. FASEB J 17(8):899-901, 2003. Epub 2003 Mar 28.
2. Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel H, Tenenbaum H. Expression of mRNAs encoding for a and B integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res 79(9):1712-1716, 2000.
3. Chiba M, Mitani H. Cytoskeletal changes and the system of regulation of alkaline phosphatase activity in human periodontal ligament cells induced by mechanical stress. Cell Biochemistry and Function 22(4):249-256, 2004.
4. Cho JH, Lee SK, Lee JW, Kim EC. The role of heme oxygenase-1 in mechanical stress- and lipopolysaccharide-induced osteogenic differentiation in human periodontal ligament cells. Angle Orthod 80(4):552-559, 2010.
5. Doi T, Ohno S, Tanimoto K, Honda K, Tanaka N, Ohno-Nakahara M, Yoneno K, Suzuki A, Nakatani Y, Ueki M, Tanne K. Mechanical stimuli enhances the expression of RGD-CAP/β ig-h3 in the periodontal ligament. Archives of Oral Biology 48(8):573-579, 2003.
6. Duarte WR, Mikuni-Takagaki Y, Kawase T, Limura T, Oida S, Ohya K, Takenaga K, Ishikawa L, Kasugai S. Effects of mechanical stress on the mRNA expression of S100A4 and cytoskeletal components by periodontal ligament cells. J Med Dent Sci 46(3):117-122, 1999.
7. Enokiya Y, Hashimoto S, Muramatsu T, Jung HS, Tazaki M, Inoue T, Abiko Y, Shimono M. Effect of stretching stress on gene transcription related to early-phase differentiation in rat periodontal ligament cells. Bull Tokyo Dent Coll 51(3):129-137, 2010.
8. Han Y, Pan J, Wang X, Qi Y, Wang S, Yan Z. Cyclic strain promotes migration and proliferation of human periodontal ligament cell via PI3K signaling pathway. Cellular and Molecular Bioengineering 3(4): 369-375, 2010.
9. Kanzaki H, Chiba M, Sato A, Miyagawa A, Arai K, Nukatsuka S, Mitani H. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J Dent Res 85(5):457-462, 2006.
10. Kikuiri T, Hasegawa T, Yoshimura Y, Shirakawa T, Oguchi H. Cyclic tension force activates nitric oxide production in cultured human periodontal ligament cells. J Periodontol 71(4):533-539, 2000.
11. Kim HJ, Choi YS, Jeong MJ, KimBO, Lim SH, Kim DK, Kim CK, Park JC. Expression of UNCL during development of periodontal tissue and response of periodontal ligament fibroblasts to mechanical stress in vivo and in vitro. Cell Tissue Res 327(1):25-31, 2007.
12. Kimoto S, Matsuzawa M, Matsubara S, Komatsu T, Uchimura N, Kawase T, Saito S. Cytokine secretion of periodontal ligament fibroblasts derived from human deciduous teeth: effect of mechanical stress on the secretion of transforming growth factor-β1 and macrophage colony stimulating factor. J Periodontal Res 34(5):235-243, 1999.
FLEXCELL? INTERNATIONAL CORPORATION
43
13. Liu M, Dai J, Lin Y, Yang L, Dong H, Li Y, Ding Y, Duan Y. Effect of the cyclic stretch on the expression of osteogenesis genes in human periodontal ligament cells. Gene 491(2):187-193, 2012. Epub 2011 Oct 12.
14. Long P, Hu J, Piesco N, Buckley M, Agarwal S. Low magnitude of tensile strain inhibits IL-1β-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J Dent Res 80(5):1416-1420, 2001.
15. Long P, Liu F, Piesco NP, Kapur R, Agarwal S. Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in human periodontal ligament cells in vitro. Bone 30(4):547-552, 2002.
16. Matsuda N, Yokoyama K, Takeshita S, Watanabe M. Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro. Arch Oral Biol 43(12):987-997, 1998.
17. Miura S, Yamaguchi M, Shimizu N, Abiko Y. Mechanical stress enhances expression and production of plasminogen activator in aging human periodontal ligament cells. Mechanisms of Ageing and Development 112(3):217-231, 2000.
18. Myokai F, Oyama M, Nishimura F, Ohira T, Yamamoto T, Arai H, Takashiba S, Murayama Y. Unique genes induced by mechanical stress in periodontal ligament cells. J Periodontal Res 38(3):255-261, 2003.
19. Nokhbehsaim M, Deschner B, Winter J, Bourauel C, J?ger A, Jepsen S, Deschner J. Anti-inflammatory effects of EMD in the presence of biomechanical loading and interleukin-1β in vitro. Clin Oral Investig 16(1):275-283, 2012. Epub 2011 Jan 12.
20. Nokhbehsaim M, Deschner B, Winter J, Bourauel C, Rath B, J?ger A, Jepsen S, Deschner J. Interactions of regenerative, inflammatory and biomechanical signals on bone morphogenetic protein-2 in periodontal ligament cells. J Periodontal Res 46(3):374-381, 2011. doi: 10.1111/j.1600-0765.2011.01357.x. Epub 2011 Mar 17.
21. Nokhbehsaim M, Deschner B, Winter J, Reimann S, Bourauel C, Jepsen S, J?ger A, Deschner J. Contribution of orthodontic load to inflammation-mediated periodontal destruction. J Orofac Orthop 71(6):390-402, 2010. Epub 2010 Nov 17.
22. Ohzeki K, Yamaguchi M, Shimizu N, Abiko Y. Effect of cellular aging on the induction of cyclooxygenase-2 by mechanical stress in human periodontal ligament cells. Mechanisms of Ageing and Development 108(2):151-163, 1999.
23. Ozaki S, Kaneko S, Podyma-Inoue KA, Yanagishita M, Soma K. Modulation of extracellular matrix synthesis and alkaline phosphatase activity of periodontal ligament cells by mechanical stress. J Periodontal Res 40(2):110-117, 2005.
24. Ozawa Y, Shimizu N, Abiko Y. Low-energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med 21(5):456-463, 1997.
25. Saeki Y, Ohara A, Nishikawa M, Yamamoto T, Yamamoto G. The presence of arachidonic acid-activated K+ channel, TREK-1, in human periodontal ligament fibroblasts. Drug Metab Rev 39(2-3):457-465, 2007.
26. Saminathan A, Vinoth KJ, Wescott DC, Pinkerton MN, Milne TJ, Cao T, Meikle MC. The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. J Periodontal Res 47(2):212-221, 2012. doi: 10.1111/j.1600-0765.2011.01423.x. Epub 2011 Oct 20.
FLEXCELL? INTERNATIONAL CORPORATION
44
27. Shimizu N, Yamaguchi M, Uesu K, Goseki T, Abiko Y. Stimulation of prostaglandin E2 and interleukin-1βproduction from old rat periodontal ligament cells subjected to mechanical stress. J Gerontol A Biol Sci Med Sci 55(10):B489-B495, 2000.
28. Tsuji K, Uno K, Zhang GX, Tamura M. Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab 22(2):94-103, 2004.
29. Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW. TGF-?1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439-1443, 2010. Epub 2010 Oct 12.
30.Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86(12):1212-1216, 2007.
31. Yamaguchi M, Shimizu N, Goseki T, Shibata Y, Takiguchi H, Iwasawa T, Abiko Y. Effect of different magnitudes of tension force on prostaglandin E"2 production by human periodontal ligament cells. Archives of Oral Biology 39(10):877-884, 1994.
32. Yamaguchi M, Shimizu N, Ozawa Y, Saito K, Miura S, Takiguchi H, Iwasawa T, Abiko Y. Effect of tension-force on plasminogen activator activity from human periodontal ligament cells. J Periodontal Res 32(3):308-314, 1997.
33. Yamaguchi M, Shimizu N. Identification of factors mediating the decrease of alkaline phosphatase activity caused by tension-force in periodontal ligament cells. General Pharmacology 25(6):1229-1235, 1994.
34. Yamaguchi N, Chiba M, Mitani H. The induction of c-fos mRNA expression by mechanical stress in human periodontal ligament cells. Archives of Oral Biology 47(6):465-471, 2002.
35. Yamashiro K, Myokai F, Hiratsuka K, Yamamoto T, Senoo K, Arai H, Nishimura F, Abiko Y, Takashiba S. Oligonucleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts. The International Journal of Biochemistry & Cell Biology 39(5):910-921, 2007.
36. Yoshino H, Morita I, Murota SI, Ishikawa I. Mechanical stress induces production of angiogenic regulators in cultured human gingival and periodontal ligament fibroblasts. J Periodontal Res 38(4):405-410, 2003.
Knee ligaments
37. Hannafin JA, Attia EA, Henshaw R, Warren RF, Bhargava MM. Effect of cyclic strain and plating matrix on cell proliferation and integrin expression by ligament fibroblasts. J Orthop Res 24(2):149-58, 2005.
38. Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481-490, 2006.
39. Hsieh AH, Tsai CM, Ma QJ, Lin T, Banes AJ, Villarreal FJ, Akeson WH, Sung KL. Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res 18(2):220-227, 2000.
FLEXCELL? INTERNATIONAL CORPORATION
45
40. Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech 38(8):1653-1664, 2005.
41. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-1270, 2005.
42. Lee CY, Liu X, Smith CL, Zhang X, Hsu HC, Wang DY, Luo ZP. The combined regulation of estrogen and cyclic tension on fibroblast biosynthesis derived from anterior cruciate. Matrix Biology 23(5):323-329, 2004.
43. Lee CY, Smith CL, Zhang X, Hsu HC, Wang DY, Luo ZP. Tensile forces attenuate estrogen-stimulated collagen synthesis in the ACL. Biochemical and Biophysical Research Communications 317:1221–1225, 2004.
Other ligament cells
44. Ewies AA, Elshafie M, Li J, Stanley A, Thompson J, Styles J, White I, Al-Azzawi F. Changes in transcription profile and cytoskeleton morphology in pelvic ligament fibroblasts in response to stretch: the effects of estradiol and levormeloxifene. Mol Hum Reprod 14(2):127-135, 2008. Epub 2008 Jan 9.
45. Nakatani T, Marui T, Hitora T, Doita M, Nishida K, Kurosaka M. Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-1. J Orthop Res 20(6):1380-1386, 2002.
46. Yang HS, Lu XH, Chen DY, Yuan W, Yang LL, Chen Y, He HL. Mechanical strain induces Cx43 expression in spinal ligament fibroblasts derived from patients presenting ossification of the posterior longitudinal ligament. Eur Spine J 20(9):1459-1465, 2011. Epub 2011 Mar 26.
Liver
1. Amura CR, Brodsky KS, Gitomer B, McFann K, Lazennec G, Nichols MT, Jani A, Schrier RW, Doctor RB. CXCR2 agonists in ADPKD liver cyst fluids promote cell proliferation. Am J Physiol Cell Physiol 294(3):C786-C796, 2008. Epub 2008 Jan 16.
2. Sakata R, Ueno T, Nakamura T, Ueno H, Sata M. Mechanical stretch induces TGF-β synthesis in hepatic stellate cells. Eur J Clin Invest 34(2):129-136, 2004.
Lung
Alveolar macrophages
1. Edwards YS, Sutherland LM, Murray AW. NO protects alveolar type II cells from stretch-induced apoptosis. A novel role for macrophages in the lung. Am J Physiol Lung Cell Mol Physiol 279(6):L1236-L1242, 2000.
2. Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA. Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291(6):L1191-8, 2006.
FLEXCELL? INTERNATIONAL CORPORATION
46
Lung fibroblasts
3. Aljamal-Naylor R, Wilson L, McIntyre S, Rossi F, Harrison B, Marsden M, Harrison DJ. Allosteric modulation of beta1 integrin function induces lung tissue repair. Adv Pharmacol Sci 2012:768720, 2012. Epub 2012 Feb 26.
4. Breen EC, Fu Z, Norman H. Calcyclin gene expression is increased by mechanical strain in fibroblasts and lung. Am J Respir Cell Mol Biol 21:746–752, 1999.
5. Breen EC. Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J Appl Physiol 88(1):203-209, 2000.
6. Blaauboer ME, Smit TH, Hanemaaijer R, Stoop R, Everts V. Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts. Biochem Biophys Res Commun 404(1):23-27, 2011. Epub 2010 Nov 20.
7. Copland IB, Reynaud D, Pace-Asciak C, Post M. Mechanotransduction of stretch-induced prostanoid release by fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 291(3):L487-L495, 2006.
8. Klein G, Schaefer A, Hilfiker-Kleiner D, Oppermann D, Shukla P, Quint A, Podewski E, Hilfiker A, Schroder F, Leitges M, Drexler H. Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKCε. Circ Res 96(7):748-755, 2005.
9. Le Bellego F, Plante S, Chakir J, Hamid Q, Ludwig MS. Differences in MAP kinase phosphorylation in response to mechanical strain in asthmatic fibroblasts. Respir Res 7:68, 2006.
10. Sanchez-Esteban J, Wang Y, Cicchiello LA, Rubin LP. Pre- and postnatal lung development, maturation, and plasticity. Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 282(3):L448-L456, 2002.
Mesothelial cells
11. Brown SC, Kamal M, Nasreen N, Baumuratov A, Sharma P, Antony VB, Moudgil BM. Influence of shape, adhesion and simulated lung mechanics on amorphous silica nanoparticle toxicity. Adv Powder Tech 18(1):69-79, 2007.
12. Waters CM, Chang JY, Glucksberg MR, DePaola N, Grotberg JB. Mechanical forces alter growth factor release by pleural mesothelial cells. Am J Physiol 272(3 Pt 1):L552-L557, 1997.
Pulmonary endothelial cells
13. Abdulnour RE, Peng X, Finigan JH, Han EJ, Hasan EJ, Birukov KG, Reddy SP, Watkins JE 3rd, Kayyali US, Garcia JG, Tuder RM, Hassoun PM. Mechanical stress activates xanthine oxidoreductase through MAP kinase-dependent pathways. Am J Physiol Lung Cell Mol Physiol 291(3):L345-L353, 2006.
14. Ali MH, Mungai PT, Schumacker PT. Stretch-induced phosphorylation of focal adhesion kinase in endothelial cells: role of mitochondrial oxidants. Am J Physiol Lung Cell Mol Physiol 291(1):L38-L45, 2006.
15. Birukov KG, Jacobson JR, Flores AA, Ye SQ, Birukova AA, Verin AD, Garcia JG. Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. Am J Physiol Lung Cell Mol Physiol 285(4):L785-L797, 2003.
FLEXCELL? INTERNATIONAL CORPORATION
47
16. Birukova AA, Chatchavalvanich S, Rios A, Kawkitinarong K, Garcia JG, Birukov KG. Differential regulation of pulmonary endothelial monolayer integrity by varying degrees of cyclic stretch. Am J Pathol 168(5):1749-1761, 2006.
17. Birukova AA, Fu P, Xing J, Cokic I, Birukov KG. Lung endothelial barrier protection by iloprost in the 2-hit models of ventilator-induced lung injury (VILI) involves inhibition of Rho signaling. Transl Res 155(1):44-54, 2010.
18. Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am J Physiol Lung Cell Mol Physiol 298(6):L837-848, 2010. Epub 2010 Mar 26.
19. Birukova AA, Moldobaeva N, Xing J, Birukov KG. Magnitude-dependent effects of cyclic stretch on HGF- and VEGF-induced pulmonary endothelial remodeling and barrier regulation. Am J Physiol Lung Cell Mol Physiol 295(4):L612-L623, 2008. Epub 2008 Aug 8.
20. Birukova AA, Rios A, Birukov KG. Long-term cyclic stretch controls pulmonary endothelial permeability at translational and post-translational levels. Exp Cell Res 314(19):3466-3477, 2008. Epub 2008 Sep 19.
21. Haseneen NA, Vaday GG, Zucker S, Foda HD. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. Am J Physiol Lung Cell Mol Physiol 284(3):L541-L547, 2003.
22. Grigoryev DN, Ma SF, Irizarry RA, Ye SQ, Quackenbush J, Garcia JG. Orthologous gene-expression profiling in multi-species models: search for candidate genes. Genome Biol 5(5):R34, 2004. Epub 2004 Apr 27.
23. Liu WF, Nelson CM, Tan JL, Chen CS. Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ Res 101(5):e44-e52, 2007. Epub 2007 Aug 21.
24. Nonas S, Birukova AA, Fu P, Xing J, Chatchavalvanich S, Bochkov VN, Leitinger N, Garcia JG, Birukov KG. Oxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo. Crit Care 12(1):R27, 2008. Epub 2008 Jan 24.
25. Shikata Y, Rios A, Kawkitinarong K, DePaola N, Garcia JG, Birukov KG. Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cell. Experimental Cell Research 304(1):40-49, 2005.
26. Wedgwood S, Devol JM, Grobe A, Benavidez E, Azakie A, Fineman JR, Black SM. Fibroblast growth factor-2 expression is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 61(1):32-36, 2007.
Pulmonary epithelial cells
27. Budinger GR, Urich D, DeBiase PJ, Chiarella SE, Burgess ZO, Baker CM, Soberanes S, Mutlu GM, Jones JC. Stretch-induced activation of AMP kinase in the lung requires dystroglycan. Am J Respir Cell Mol Biol 39(6):666-672, 2008. Epub 2008 Jun 12.
28. Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM. Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289(5):L834-L841, 2005.
FLEXCELL? INTERNATIONAL CORPORATION
48
29. Charles PE, Tissières P, Barbar SD, Croisier D, Dufour J, Dunn-Siegrist I, Chavanet P, Pugin J. Mild-stretch mechanical ventilation upregulates toll-like receptor 2 and sensitizes the lung to bacterial lipopeptide. Crit Care 15(4):R181, 2011.
30. Chaturvedi LS, Marsh HM, Basson MD. Src and focal adhesion kinase mediate mechanical strain-induced proliferation and ERK1/2 phosphorylation in human H441 pulmonary epithelial cells. Am J Physiol Cell Physiol 292(5):C1701-C1713, 2007. Epub 2007 Jan 10.
31. Chess PR, O’Reilly MA, Sachs F, Finkelstein JN. Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells. J Appl Physiol 99(3):1226-1232, 2005.
32. Chess PR, O’Reilly MA, Toia L. Macroarray analysis reveals a strain-induced oxidant response in pulmonary epithelial cells. Exp Lung Res 30(8):739-53, 2004.
33. Chess PR, Toia L, Finkelstein JN. Mechanical strain-induced proliferation and signaling in pulmonary epithelial H441 cells. Am J Physiol Lung Cell Mol Physiol 279:L43-L51, 2000.
34. Copland IB, Post M. Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. J Cell Physiol 210(1):133-143, 2007.
35. Copland IB, Reynaud D, Pace-Asciak C, Post M. Mechanotransduction of stretch-induced prostanoid release by fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 291(3):L487-L495, 2006.
36. Correa-Meyer E, Pesce L, Guerrero C, Sznajder JI. Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 282(5):L883-L891, 2002.
37. Desai LP, Chapman KE, Waters CM. Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1. Am J Physiol Lung Cell Mol Physiol 295(5):L958-L965, 2008. Epub 2008 Sep 19.
38. Desai LP, White SR, Waters CM. Mechanical stretch decreases FAK phosphorylation and reduces cell migration through loss of JIP3-induced JNK phosphorylation in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 297(3):L520-L529, 2009. Epub 2009 Jul 2.
39. Desai LP, White SR, Waters CM. Cyclic mechanical stretch decreases cell migration by inhibiting phosphatidylinositol 3-kinase- and focal adhesion kinase-mediated JNK1 activation. J Biol Chem 285(7):4511-4519, 2010. Epub 2009 Dec 14.
40. Ding N, Xiao H, Xu LX, She SZ. Effect of mitogen-activated protein kinase kinase 6-p38α signal pathway on receptor for advanced glycation end-product expression in alveolar epithelial cells induced by mechanical stretch. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 21(10):597-600, 2009.
41. dos Santos CC, Han B, Andrade CF, Bai X, Uhlig S, Hubmayr R, Tsang M, Lodyga M, Keshavjee S, Slutsky AS, Liu M. DNA microarray analysis of gene expression in alveolar epithelial cells in response to TNFα, LPS, and cyclic stretch. Physiol Genomics 19(3):331-342, 2004.
42. Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J, Rosenberger P, Eltzschig HK. Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. The Journal of Immunology 178:8127-8137, 2007.
FLEXCELL? INTERNATIONAL CORPORATION
49
43. Edwards YS, Sutherland LM, Murray AW. NO protects alveolar type II cells from stretch-induced apoptosis. A novel role for macrophages in the lung. Am J Physiol Lung Cell Mol Physiol 279(6):L1236-L1242, 2000.
44. Edwards YS, Sutherland LM, Power JHT, Nicholas TE, Murray AW. Cyclic stretch induces both apoptosis and secretion in rat alveolar type II cells. FEBS Letters 448(1):127-130, 1999.
45. Frank JA, Wray CM, McAuley DF, Schwendener R, Matthay MA. Alveolar macrophages contribute to alveolar barrier dysfunction in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291(6):L1191-8, 2006.
46. Geiger RC, Kaufman CD, Lam AP, Budinger GR, Dean DA. Tubulin acetylation and histone deacetylase 6 activity in the lung under cyclic load. Am J Respir Cell Mol Biol 40(1):76-82, 2009. Epub 2008 Jul 17.
47. Gutierrez JA, Suzara VV, Dobbs LG. Continuous mechanical contraction modulates expression of alveolar epithelial cell phenotype. American Journal of Respiratory Cell and Molecular Biology 29:81-87, 2003.
48. Hammerschmidt S, Kuhn H, Grasenack T, Gessner C, Wirtz H. Apoptosis and necrosis induced by cyclic mechanical stretching in alveolar type II cells. Am J Respir Cell Mol Biol 30(3):396-402, 2004.
49. Hammerschmidt S, Kuhn H, Sack U, Schlenska A, Gessner C, Gillissen A, Wirtz H. Mechanical stretch alters alveolar type II cell mediator release toward a proinflammatory pattern. Am J Respir Cell Mol Biol 33(2):203-210, 2005. Epub 2005 Jun 9.
50. Hossain MM, Smith PG, Wu K, Jin JP. Cytoskeletal tension regulates both expression and degradation of h2-calponin in lung alveolar cells. Biochemistry 45(51):15670-15683, 2006.
51. Huang Z, Wang Y, Nayak PS, Dammann CE, Sanchez-Esteban J. Stretch-induced fetal type II cell differentiation is mediated via ErbB1 - ErbB4 interactions. J Biol Chem 287(22):18091-18102, 2012. Epub 2012 Apr 9.
52. Jones JC, Lane K, Hopkinson SB, Lecuona E, Geiger RC, Dean DA, Correa-Meyer E, Gonzales M, Campbell K, Sznajder JI, Budinger S. Laminin-6 assembles into multimolecular fibrillar complexes with perlecan and participates in mechanical-signal transduction via a dystroglycan-dependent, integrin-independent mechanism. J Cell Sci 118(Pt 12):2557-2566, 2005.
53. Kim KC, Zheng QX, Brody JS. Effect of floating a gel matrix on mucin release in cultured airway epithelial cells. J Cell Physiol 156(3):480-486, 1993.
54. Lee HS, Wang Y, Maciejewski BS, Esho K, Fulton C, Sharma S, Sanchez-Esteban J. Interleukin-10 protects cultured fetal rat type II epithelial cells from injury induced by mechanical stretch. Am J Physiol Lung Cell Mol Physiol 294:L225–L232, 2008.
55. Makena PS, Luellen CL, Balazs L, Ghosh MC, Parthasarathi K, Waters CM, Sinclair SE. Preexposure to hyperoxia causes increased lung injury and epithelial apoptosis in mice ventilated with high tidal volumes. Am J Physiol Lung Cell Mol Physiol 299(5):L711-L719, 2010. Epub 2010 Sep 10.
56. McAdams RM, Mustafa SB, Shenberger JS, Dixon PS, Henson BM, DiGeronimo RJ. Cyclic stretch attenuates effects of hyperoxia on cell proliferation and viability in human alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 291(2):L166-74, 2006.
FLEXCELL? INTERNATIONAL CORPORATION
50
57. Mohammed KA, Nasreen N, Tepper RS, Antony VB. Cyclic stretch induces PlGF expression in bronchial airway epithelial cells via nitric oxide release. Am J Physiol Lung Cell Mol Physiol 292(2):L559-L566, 2007.
58. Ning Q, Wang X. Role of Rel A and IκB of nuclear factor κB in the release of interleukin-8 by cyclic mechanical strain in human alveolar type II epithelial cells A549. Respirology 12(6):792-798, 2007.
59. Oudin S, Pugin J. Role of MAP kinase activation in interleukin-8 production by human BEAS-2B bronchial epithelial cells submitted to cyclic stretch. Am J Respir Cell Mol Biol 27(1):107-14, 2002.
60. Papaiahgari S, Yerrapureddy A, Hassoun PM, Garcia JG, Birukov KG, Reddy SP. EGFR-activated signaling and actin remodeling regulate cyclic stretch-induced NRF2-ARE activation. Am J Respir Cell Mol Biol 36(3):304-312, 2007. Epub 2006 Sep 28.
61. Pasternack M Jr, Liu X, Goodman RA, Rannels DE. Regulated stimulation of epithelial cell DNA synthesis by fibroblast-derived mediators. Am J Physiol 272(4 Pt 1):L619-L630, 1997.
62. Patel H, Eo S, Kwon S. Effects of diesel particulate matters on inflammatory responses in static and dynamic culture of human alveolar epithelial cells. Toxicol Lett 200(1-2):124-131, 2011. Epub 2010 Nov 19.
63. Patel H, Kim H, Kwon S. Effect of dynamic environment on the interaction between nanoparticles and human airway epithelial cell monolayer. NSTI-Nanotech 3:565-568, 2010.
64. Rose F, Zwick K, Ghofrani HA, Sibelius U, Seeger W, Walmrath D, Grimminger F. Prostacyclin enhances stretch-induced surfactant secretion in alveolar epithelial type II cells. Am J Respir Crit Care Med 160(3):846-851, 1999.
65. Sanchez-Esteban J, Cicchiello LA, Wang Y, Tsai S-W, Williams LK, Torday JS, Rubin LP. Mechanical stretch promotes alveolar epithelial type II cell differentiation. J Appl Physiol 91(2):589-595, 2001.
66. Sanchez-Esteban J, Tsai SW, Sang J, Qin J, Torday JS, Rubin LP. Effects of mechanical forces on lung-specific gene expression. Am J Med Sci 316(3):200-204, 1998.
67. Sanchez-Esteban J, Wang Y, Filardo EJ, Rubin LP, Ingber DE. Integrins β1, α6, and α3 contribute to mechanical strain-induced differentiation of fetal lung type II epithelial cells via distinct mechanisms. Am J Physiol Lung Cell Mol Physiol 290(2):L343-L350, 2006.
68. Sanchez-Esteban J, Wang Y, Gruppuso PA, Rubin LP. Mechanical stretch induces fetal type II cell differentiation via an epidermal growth factor receptor-extracellular-regulated protein kinase signaling pathway. Am J Respir Cell Mol Biol 30:76–83, 2004.
69. Savla U, Olson LE, Waters CM. Mathematical modeling of airway epithelial wound closure during cyclic mechanical strain. J Appl Physiol 96(2):566-574, 2004.
70. Savla U, Sporn PH, Waters CM. Cyclic stretch of airway epithelium inhibits prostanoid synthesis. Am J Physiol Lung Cell Mol Physiol 273:L1013-L1019, 1997.
71. Savla U, Waters CM. Mechanical strain inhibits repair of airway epithelium in vitro. Am J Physiol Lung Cell Mol Physiol 274:883-892, 1998.
72. Scott JE, Yang SY, Stanik E, Anderson JE. Influence of strain on [3H]thymidine incorporation, surfactant-related phospholipid synthesis, and cAMP levels in fetal type II alveolar cells. Am J Respir Cell Mol Biol 8(3):258-265, 1993.
FLEXCELL? INTERNATIONAL CORPORATION
51
73. Takawira D, Budinger GR, Hopkinson SB, Jones JC. A dystroglycan/plectin scaffold mediates mechanical pathway bifurcation in lung epithelial cells. J Biol Chem 286(8):6301-6310, 2011. Epub 2010 Dec 13.
74. Taylor W, Gokay KE, Capaccio C, Davis E, Glucksberg M, Dean DA. The effects of cyclic stretch on gene transfer in alveolar epithelial cells. Mol Ther 7(4):542-549, 2003.
75. Thomas RA, Norman JC, Huynh TT, Williams B, Bolton SJ, Wardlaw AJ. Mechanical stretch has contrasting effects on mediator release from bronchial epithelial cells, with a rho-kinase-dependent component to the mechanotransduction pathway. Respir Med 100(9):1588-1597, 2006. Epub 2006 Feb 15.
76. Torday JS, Rehan VK. Stretch-stimulated surfactant synthesis is coordinated by the paracrine actions of PTHrP and leptin. Am J Physiol Lung Cell Mol Physiol 283(1):L130-L135, 2002.
77. Torday JS, Torres E, Rehan VK. The role of fibroblast transdifferentiation in lung epithelial cell proliferation, differentiation, and repair in vitro. Pediatr Pathol Mol Med 22(3):189-207, 2003.
78. Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD. Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol 277:L167-L173, 1999.
79. Wang Y, Huang Z, Nayak PS, Sanchez-Esteban J. An experimental system to study mechanotransduction in fetal lung cells. J Vis Exp (60), 2012. pii: 3543. doi: 10.3791/3543.
80. Wang Y, Maciejewski BS, Drouillard D, Santos M, Hokenson MA, Hawwa RL, Huang Z, Sanchez-Esteban J. A role for caveolin-1 in mechanotransduction of fetal type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 298(6):L775-L783, 2010. Epub 2010 Feb 19.
81. Wang Y, Maciejewski BS, Lee N, Silbert O, McKnight NL, Frangos JA, Sanchez-Esteban J. Strain-induced fetal type II epithelial cell differentiation is mediated via cAMP-PKA-dependent signaling pathway. Am J Physiol Lung Cell Mol Physiol 291(4):L820-L827, 2006.
82. Wang Y, Maciejewski BS, Weissmann G, Silbert O, Han H, Sanchez-Esteban J. DNA microarray reveals novel genes induced by mechanical forces in fetal lung type II epithelial cells. Pediatr Res 60(2):118-124, 2006.
83. Waters CM, Ridge KM, Sunio G, Venetsanou K, Sznajder JI. Mechanical stretching of alveolar epithelial cells increases Na+-K+-ATPase activity. J Appl Physiol 87(2):715-721, 1999.
84. Waters CM, Savla U. Keratinocyte growth factor accelerates wound closure in airway epithelium during cyclic mechanical strain. J Cell Physiol 181(3):424-432, 1999.
85. Wu Q, Shu H, Yao S, Xiang H. Mechanical stretch induces pentraxin 3 release by alveolar epithelial cells in vitro. Med Sci Monit 15(5):BR135-BR140, 2009.
Pulmonary smooth muscle cells
86. Bonacci JV, Harris T, Stewart AG. Impact of extracellular matrix and strain on proliferation of bovine airway smooth muscle. Clin Exp Pharmacol Physiol 30(5-6):324-328, 2003.
FLEXCELL? INTERNATIONAL CORPORATION
52
87. Fairbank NJ, Connolly SC, Mackinnon JD, Wehry K, Deng L, Maksym GN. Airway smooth muscle cell tone amplifies contractile function in the presence of chronic cyclic strain. Am J Physiol Lung Cell Mol Physiol 295(3):L479-L488, 2008. Epub 2008 Jun 27.
88. Hasaneen NA, Zucker S, Cao J, Chiarelli C, Panettieri RA, Foda HD. Cyclic mechanical strain-induced proliferation and migration of human airway smooth muscle cells: role of EMMPRIN and MMPs. FASEB J 19(11):1507-1509, 2005.
89. Hasaneen NA, Zucker S, Lin RZ, Vaday GG, Panettieri RA, Foda HD. Angiogenesis is induced by airway smooth muscle strain. Am J Physiol Lung Cell Mol Physiol 293(4):L1059-L1068, 2007. Epub 2007 Aug 10.
90. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, Herszberg B, Lavoie JP, McVicker CG, Moir LM, Nguyen TT, Peng Q, Ramos-Barbon D, Stewart AG. Proliferative aspects of airway smooth muscle. Journal of Allergy and Clinical Immunology 114(2 Suppl):S2-S17, 2004.
91. Kumar A, Knox AJ, Boriek AM. CCAAT/enhancer-binding protein and activator protein-1 transcription factors regulate the expression of interleukin-8 through the mitogen-activated protein kinase pathways in response to mechanical stretch of human airway smooth muscle cells. J Biol Chem 278(21):18868-18876, 2003.
92. Mata-Greenwood E, Grobe A, Kumar S, Noskina Y, and Black SM. Cyclic stretch increases VEGF expression in pulmonary arterial smooth muscle cells via TGF-β1 and reactive oxygen species: a requirement for NAD(P)H oxidase. Am J Physiol Lung Cell Mol Physiol 289(2):L288-L289, 2005.
93. Mohamed JS, Boriek AM. Stretch augments TGF-beta1 expression through RhoA/ROCK1/2, PTK, and PI3K in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 299(3):L413-L424, 2010. Epub 2010 May 28.
94. Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem 285(38):29336-29347, 2010. Epub 2010 Jun 3.
95. Ochoa CD, Baker H, Hasak S, Matyal R, Salam A, Hales CA, Hancock W, Quinn DA. Cyclic stretch affects pulmonary endothelial cell control of pulmonary smooth muscle cell growth. Am J Respir Cell Mol Biol 39(1):105-112, 2008. Epub 2008 Feb 28.
96. Pasternyk SM, D’Antoni ML, Venkatesan N, Siddiqui S, Martin JG, Ludwig MS. Differential effects of extracellular matrix and mechanical strain on airway smooth muscle cells from ovalbumin- vs. saline-challenged Brown Norway rats. Respir Physiol Neurobiol 181(1):36-43, 2012. Epub 2012 Jan 31.
97. Quinn TP, Schlueter M, Soifer SJ, Gutierrez JA. Cyclic mechanical stretch induces VEGF and FGF-2 expression in pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 282(5):L897-L903, 2002.
98. Smith PG, Deng L, Fredberg JJ, Maksym GN. Mechanical strain increases cell stiffness through cytoskeletal filament reorganization. Am J Physiol Lung Cell Mol Physiol 285(2):L456-L463, 2003.
99. Smith PG, Garcia R, Kogerman L. Strain reorganizes focal adhesions and cytoskeleton in cultured airway smooth muscle cells. Exp Cell Res 232(1):127-136, 1997.
100. Smith PG, Roy C, Dreger J, Brozovich F. Mechanical strain increases velocity and extent of shortening in cultured airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 277:L343-L348, 1999.
FLEXCELL? INTERNATIONAL CORPORATION
53
101. Smith PG, Roy C, Fisher S, Huang QQ, Brozovich F. Selected Contribution: Mechanical strain increases force production and calcium sensitivity in cultured airway smooth muscle cells. J Appl Physiol 89(5):2092-2098, 2000.
102. Smith PG, Roy C, Zhang YN, Chauduri S. Mechanical stress increases RhoA activation in airway smooth muscle cells. Am J Respir Cell Mol Biol 28(4):436-442, 2003.
103. Smith PG, Tokui T, Ikebe M. Mechanical strain increases contractile enzyme activity in cultured airway smooth muscle cells. Am J Physiol 268(6 Pt 1):L999-L1005, 1995.
104. Wang L, Liu HW, McNeill KD, Stelmack G, Scott JE, Halayko AJ. Mechanical strain inhibits airway smooth muscle gene transcription via protein kinase C signaling. American Journal of Respiratory Cell Molecular Biology 31:54-61, 2004.
105. Wedgwood S, Devol JM, Grobe A, Benavidez E, Azakie A, Fineman JR, Black SM. Fibroblast growth factor-2 expression is altered in lambs with increased pulmonary blood flow and pulmonary hypertension. Pediatr Res 61(1):32-36, 2007.
Other pulmonary cells
106. Ding N, Xiao H, Gao J, Xu LX, She SZ. Regulation of P38 and MKK6 on HMGB1 expression in alveolar macrophages induced by cyclic mechanical stretch. Sheng Li Xue Bao 61(1):49-55, 2009.
107. Geiger RC, Taylor W, Glucksberg MR, Dean DA. Cyclic stretch-induced reorganization of the cytoskeleton and its role in enhanced gene transfer. Gene Ther 13(8):725-731, 2006.
108. Ludwig MS, Ftouhi-Paquin N, Huang W, Pagé N, Chakir J, Hamid Q. Mechanical strain enhances proteoglycan message in fibroblasts from asthmatic subjects. Clin Exp Allergy 34(6):926-930, 2004.
109. Ma D, Lu H, Xu L, Xu X, Xiao W. Mechanical loading promotes Lewis lung cancer cell growth through periostin. In Vitro Cell Dev Biol Anim 45(8):467-472, 2009. Epub 2009 Jun 16.
110. Muratore CS, Nguyen HT, Ziegler MM, Wilson JM. Stretch-induced upregulation of VEGF gene expression in murine pulmonary culture: A role for angiogenesis in lung development. Journal of Pediatric Surgery 35(6):906-913, 2000.
111. Pan J, Copland I, Post M, Yeger H, Cutz E. Mechanical stretch-induced serotonin release from pulmonary neuroendocrine cells: implications for lung development. Am J Physiol Lung Cell Mol Physiol 290(1):L185-L193, 2006.
112. Pugin J, Dunn-Siegrist I, Dufour J, Tissières P, Charles PE, Comte R. Cyclic stretch of human lung cells induces an acidification and promotes bacterial growth. Am J Respir Cell Mol Biol 38(3):362-370, 2008. Epub 2007 Oct 5.
113. Tepper RS, Ramchandani R, Argay E, Zhang L, Xue Z, Liu Y, Gunst SJ. Chronic strain alters the passive and contractile properties of rabbit airways. J Appl Physiol 98(5):1949-1954, 2005.
114. Torday JS, Rehan VK. Stretch-stimulated surfactant synthesis is coordinated by the paracrine actions of PTHrP and leptin. Am J Physiol Lung Cell Mol Physiol 283(1):L130-L135, 2002.
FLEXCELL? INTERNATIONAL CORPORATION
54
Meniscus
1. Deschner J, Wypasek E, Ferretti M, Rath B, Anghelina M, Agarwal S. Regulation of RANKL by biomechanical loading in fibrochondrocytes of meniscus. J Biomech 39(10):1796-1803, 2006. Epub 2005 Jul 21
2. Fermor B, Jeffcoat D, Hennerbichler A, Pisetsky DS, Weinberg JB, Guilak F. The effects of cyclic mechanical strain and tumor necrosis factor α on the response of cells of the meniscus. Osteoarthritis Cartilage 12:956-962, 2004.
3. Ferretti M, Madhavan S, Deschner J, Rath-Deschner B, Wypasek E, Agarwal S. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes.Am J Physiol Cell Physiol 290(6):C1610-15, 2006. Epub 2006 Feb 1.
4. Upton ML, Hennerbichler A, Fermor B, Guilak F, Weinberg JB, Setton LA. Biaxial strain effects on cells from the inner and outer regions of the meniscus. Connect Tissue Res 47(4):207-214, 2006.
Neurons, Astrocytes, & Brain
1. Arundine M, Aarts M, Lau A, Tymianski M. Vulnerability of central neurons to secondary insults after in vitro mechanical stretch. J Neurosci 24(37):8106-8123, 2004.
2. Arundine M, Chopra GK, Wrong A, Lei S, Aarts MM, MacDonald JF, Tymianski M. Enhanced vulnerability to NMDA toxicity in sublethal traumatic neuronal injury in vitro. Journal of Neurotrauma 20(12):1377-1395, 2003.
3. Bhattacharya MR, Bautista DM, Wu K, Haeberle H, Lumpkin EA, Julius D. Radial stretch reveals distinct populations of mechanosensitive mammalian somatosensory neurons. Proc Natl Acad Sci U S A 105(50):20015-20020, 2008. Epub 2008 Dec 5.
4. Gladman SJ, Huang W, Lim SN, Dyall SC, Boddy S, Kang JX, Knight MM, Priestley JV, Michael-Titus AT. Improved outcome after peripheral nerve injury in mice with increased levels of endogenous ω-3 polyunsaturated fatty acids. J Neurosci 32(2):563-571, 2012.
5. Gladman SJ, Ward RE, Michael-Titus AT, Knight MM, Priestley JV. The effect of mechanical strain or hypoxia on cell death in subpopulations of rat dorsal root ganglion neurons in vitro. Neuroscience 171(2):577-587, 2010. Epub 2010 Jul 29.
6. Lau A, Arundine M, Sun HS, Jones M, Tymianski M. Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 26(45):11540-11553, 2006.
7. Ostrow LW, Sachs F. Mechanosensation and endothelin in astrocytes-hypothetical roles in CNS pathophysiology. Brain Research Reviews 48(3):488-508, 2005.
8. Uchida K, Nakajima H, Takamura T, Furukawa S, Kobayashi S, Yayama T, Baba H. Gene expression profiles of neurotrophic factors in rat cultured spinal cord cells under cyclic tensile stress. Spine (Phila Pa 1976) 33(24):2596-2604, 2008.
Skeletal Muscle
1. Anderson JE, Wozniak AC. Satellite cell activation on fibers: modeling events in vivo — an invited review. Can J Physiol Pharmacol 82:300–310, 2004.
FLEXCELL? INTERNATIONAL CORPORATION
55
2. Boonen KJ, Langelaan ML, Polak RB, van der Schaft DW, Baaijens FP, Post MJ. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering. J Biomech 43(8):1514-1521, 2010. Epub 2010 Feb 26.
3. Cha MC, Purslow PP. The activities of MMP-9 and total gelatinase respond differently to substrate coating and cyclic mechanical stretching in fibroblasts and myoblasts. Cell Biol Int 34(6):587-591, 2010.
4. Chandran R, Knobloch TJ, Anghelina M, Agarwal S. Biomechanical signals upregulate myogenic gene induction in the presence or absence of inflammation. Am J Physiol Cell Physiol 293(1):C267-C276, 2007.
5. Clarke MS, Feeback DL. Mechanical load induces sarcoplasmic wounding and FGF release in differentiated human skeletal muscle cultures. FASEB J 10(4):502-509, 1996.
6. Demoule A, Divangahi M, Yahiaoui L, Danialou G, Gvozdic D, Labbe K, Bao W, Petrof BJ. Endotoxin triggers nuclear factor-κB-dependent up-regulation of multiple proinflammatory genes in the diaphragm. Am J Respir Crit Care Med 174(6):646-653, 2006. Epub 2006 Jun 15.
7. Ebihara S, Hussain SN, Danialou G, Cho WK, Gottfried SB, Petrof BJ. Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Respir Crit Care Med 165(2):221-228, 2002.
8. Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, Uehara K, Akema T, Sugiura T, Yamada S, Ohira Y, Yoshioka T. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch 447(2):247-253, 2003.
9. Ho AM, Marker PC, Peng H, Quintero AJ, Kingsley DM, Huard J. Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation. BMC Dev Biol 8:35, 2008.
10. Hornberger TA, Armstrong DD, Koh TJ, Burkholder TJ, Esser KA. Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 288(1):C185-C194, 2005.
11. Hornberger TA, Stuppard R, Conley KE, Fedele MJ, Fiorotto ML, Chin ER, Esser KA. Mechanical stimuli regulate rapamycin-sensitive signalling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism. Biochem J 380(Pt 3):795-804, 2004.
12. Hubatsch DA, Jasmin BJ. Mechanical stimulation increases expression of acetylcholinesterase in cultured myotubes. Am J Physiol Cell Physiol 273:C2002-C2009, 1997.
13. Iwanuma O, Abe S, Hiroki E, Kado S, Sakiyama K, Usami A, Ide Y. Effects of mechanical stretching on caspase and IGF-1 expression during the proliferation process of myoblasts. Zoolog Sci 25(3):242-247, 2008.
14. Kook SH, Lee HJ, Chung WT, Hwang IH, Lee SA, Kim BS, Lee JC. Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol Cells 25(4):479-486, 2008. Epub 2008 Apr 23.
15. Kumar A, Murphy R, Robinson P, Wei L, Boriek AM. Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-κB transcription factor. FASEB J 18(13):1524-1535, 2004.
FLEXCELL? INTERNATIONAL CORPORATION
56
16. Kurokawa K, Abe S, Sakiyama K, Takeda T, Ide Y, Ishigami K. Effects of stretching stimulation with different rates on the expression of MyHC mRNA in mouse cultured myoblasts. Biomed Res 28(1):25-31, 2007.
17. Liu J, Liu J, Mao J, Yuan X, Lin Z, Li Y. Caspase-3-mediated cyclic stretch-induced myoblast apoptosis via a Fas/FasL-independent signaling pathway during myogenesis. J Cell Biochem 107(4):834-844, 2009.
18. Milkiewicz M, Doyle JL, Fudalewski T, Ispanovic E, Aghasi M, Haas TL. HIF-1α and HIF-2α play a central role in stretch-induced but not shear-stress-induced angiogenesis in rat skeletal muscle. J Physiol 583(Pt 2):753-766, 2007. Epub 2007 Jul 12.
19. Milkiewicz M, Mohammadzadeh F, Ispanovic E, Gee E, Haas TL. Static strain stimulates expression of matrix metalloproteinase-2 and VEGF in microvascular endothelium via JNK- and ERK-dependent pathways. J Cell Biochem 100(3):750-761, 2007.
20. Mitsumoto Y, Downey GP, Klip A. Stimulation of glucose transport in L6 muscle cells by long-term intermittent stretch-relaxation. FEBS Letters 301(1):94-98, 1992.
21. Miyazaki M, Esser KA. REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch. Am J Physiol Cell Physiol 296(3):C583-C592, 2009. Epub 2009 Jan 7.
22. Nguyen HX, Lusis AJ, Tidball JG. Null mutation of myeloperoxidase in mice prevents mechanical activation of neutrophil lysis of muscle cell membranes in vitro and in vivo. J Physiol 565(Pt 2):403-13, 2005.
23. Pardo PS, Mohamed JS, Lopez MA, Boriek AM. Induction of Sirt1 by mechanical stretch of skeletal muscle through the early response factor EGR1 triggers an antioxidative response. J Biol Chem 286(4):2559-2566, 2011. Epub 2010 Oct 22.
24. Peterson JM, Pizza FX. Cytokines derived from cultured skeletal muscle cells after mechanical strain promote neutrophil chemotaxis in vitro. J Appl Physiol 106:130-137, 2009.
25. Sampaolesi M, Yoshida T, Iwata Y, Hanada H, Shigekawa M. Stretch-induced cell damage in sarcoglycan-deficient myotubes. Pflügers Arch - Eur J Physiol 442:161–170, 2001.
26. Tatsumi R, Hattori A, Allen RE, Ikeuchi Y, Ito T. Mechanical stretch-induced activation of skeletal muscle satellite cells is dependent on nitric oxide production in vitro. Animal Sci J 73(3):235-239, 2002.
27. Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13(8):2909-2918, 2002.
28. Tatsumi R, Mitsuhashi K, Ashida K, Haruno A, Hattori A, Ikeuchi Y, Allen RE. Comparative analysis of mechanical stretch-induced activation activity of back and leg muscle satellite cells in vitro. Animal Sci J 75(4):345-351, 2004.
29. Tatsumi R, Sheehan SM, Iwasaki H, Hattori A, Allen RE. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp Cell Res 267(1):107-114, 2001.
30. Tsivitse SK, Mylona E, Peterson JM, Gunning WT, Pizza FX. Mechanical loading and injury induce human myotubes to release neutrophil chemoattractants. Am J Physiol Cell Physiol 288(3):C721-C729, 2005.
31. Wozniak AC, Anderson JE. The dynamics of the nitric oxide release-transient from stretched muscle cells. Int J Biochem Cell Biol 41(3):625-631, 2009. Epub 2008 Jul 25.
FLEXCELL? INTERNATIONAL CORPORATION
57
32. Wozniak AC, Anderson JE. Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236(1):240-250, 2007.
33. Wozniak AC, Pilipowicz O, Yablonka RZ, Greenway S, Craven S, Scott E, Anderson JE. C-Met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 51(11):1437-1445, 2003.
34. Yamada M, Sankoda Y, Tatsumi R, Mizunoya W, Ikeuchi Y, Sunagawa K, Allen RE. Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner.Int J Biochem Cell Biol 40(10):2183-2191, 2008. Epub 2008 Feb 23.
35. Yamashita-Goto K, Ohira Y, Okuyama R, Sugiyama H, Honda M, Sugiura T, Yamada S, Akema T, Yoshioka T. Heat stress facilitates stretch-induced hypertrophy of cultured rat skeletal muscle cells In: Proceedings of "Life in space for life on Earth". 8th European Symposium on Life Sciences Research in Space. 23rd Annual International Gravitational Physiology Meeting, 2-7 June 2002, Karolinska Institutet, Stockholm, Sweden. Ed.: B. Warmbein. ESA SP-501, Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-811-5, 2002, p. 113 – 114.
36. Yu HC, Wu TC, Chen MR, Liu SW, Chen JH, Lin KM. Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways. J Bone Miner Res 25(5):1128-1137, 2010.
37. Yuan X, Luo S, Lin Z, Wu Y. Cyclic stretch translocates the α2-subunit of the Na pump to plasma membrane in skeletal muscle cells in vitro. Biochem Biophys Res Commun 348(2):750-757, 2006. Epub 2006 Jul 31.
38. Zhang SJ, Truskey GA, Kraus WE. Effect of cyclic stretch on β1D integrin expression and activation of FAK and RhoA. Am J Physiol Cell Physiol 292:C2057–C2069, 2007.
Smooth Muscle Cells
Bladder smooth muscle cells
See page 1
Cardiovascular smooth muscle cells
See page 19
Pulmonary smooth muscle cells
See page 51
Uterine/myometrial smooth muscle cells
See page 65
Other smooth muscle cells
1. Ark M, Sevieux N, Hornick C, He Z, Songu-Mize E. Acute stretch translocates Na-pump α-1 subunit to plasma membrane in smooth muscle cells [abstract]. FASEB J 16:A466, 349.9, 2002.
2. Choi K, Mollapour E, Shears SB. Signal transduction during environmental stress: InsP8 operates within highly restricted contexts. Cellular Signalling 17(12):1533-1541, 2005.
FLEXCELL? INTERNATIONAL CORPORATION
58
3. Hoffmann S, Dalrymple A, Tribe R, Songu-Mize E. Stretch regulates expression of TrpC4 in smooth muscle cells [abstract]. FASEB J 18:A702, 459.11, 2004.
4. Hoffmann SE, Zhang Z, Songu-Mize E. Effect of cyclic stretch on TRP C expression and calcium mobilization [abstract]. Experimental Biology, San Diego, CA, April 2005.
5. Sevieux N, Alam J, Songu-Mize E. Na-pump activity and regulation by stretch: a time course study [abstract]. FASEB J 15:A444, 401.6, 2001.
6. Shi XZ, Lin YM, Powell DW, Sarna SK. Pathophysiology of motility dysfunction in bowel obstruction: role of stretch-induced COX-2. Am J Physiol Gastrointest Liver Physiol 300(1):G99-G108, 2011. Epub 2010 Nov 4.
7. Wehner S, Buchholz BM, Schuchtrup S, Rocke A, Schaefer N, Lysson M, Hirner A, Kalff JC. Mechanical strain and TLR4 synergistically induce cell-specific inflammatory gene expression in intestinal smooth muscle cells and peritoneal macrophages. Am J Physiol Gastrointest Liver Physiol 299(5):G1187-G1197, 2010. Epub 2010 Sep 9.
Stromal/ Progenitor/ Stem Cells
1. Ambrosio F, Ferrari RJ, Distefano G, Plassmeyer JM, Carvell GE, Deasy BM, Boninger ML, Fitzgerald GK, Huard J. The synergistic effect of treadmill running on stem-cell transplantation to heal injured skeletal muscle. Tissue Eng Part A 16(3):839-849, 2010.
2. Bolno PB, Wechsler AS, Ranggappa S, Kresh JY. Cyclic strain of adult stem cells modulates matrix metalloproteinase activity: mechanism for promoting cell-based cardiac remodeling [abstract]. The Journal of Heart and Lung Transplantation 24(2 Suppl):S83, 2005.
3. Case N, Thomas J, Sen B, Styner M, Xie Z, Galior K, Rubin J. Mechanical regulation of glycogen synthase kinase 3β (GSK3β) in mesenchymal stem cells is dependent on Akt protein serine 473 phosphorylation via mTORC2 protein. J Biol Chem 286(45):39450-39456, 2011. Epub 2011 Sep 28.
4. Case N, Xie Z, Sen B, Styner M, Zou M, O’Conor C, Horowitz M, Rubin J. Mechanical activation of β-catenin regulates phenotype in adult murine marrow-derived mesenchymal stem cells. J Orthop Res 28(11):1531-1538, 2010.
5. Charoenpanich A, Wall ME, Tucker CJ, Andrews DM, Lalush DS, Loboa EG. Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng Part A 17(21-22):2615-2627, 2011. Epub 2011 Jul 18.
6. Chen QZ, Ishii H, Thouas GA, Lyon AR, Wright JS, Blaker JJ, Chrzanowski W, Boccaccini AR, Ali NN, Knowles JC, Harding SE. An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart. Biomaterials 31(14):3885-3893, 2010. Epub 2010 Feb 11.
7. Clause KC, Tinney JP, Liu JL, Gharaibeh B, Fujimoto LK, Wagner WR, Ralphe JC, Keller BB, Huard J, Tobita K. Functioning engineered cardiac tissue from skeletal muscle derived stem cells [abstract]. 4th Annual Symposium of AHA Council on Basic Cardiovascular Sciences, Keystone CO, 2007.
FLEXCELL? INTERNATIONAL CORPORATION
59
8. Collins JM, Goldspink PH, Russell B. Migration and proliferation of human mesenchymal stem cells is stimulated by different regions of the mechano-growth factor prohormone. J Mol Cell Cardiol 49(6):1042-1045, 2010. Epub 2010 Sep 27.
9. David V, Marin A, Lafage-Proust MH, Malaval L, Peyroche S, Jones DB, Vico L, Guignandon A. Mechanical loading down-regulates peroxisome proliferator-activated receptor in bone marrow stromal cells and favors ssteoblastogenesis at the expense of adipogenesis. Endocrinology 148(5):2553-2562, 2007.
10. F?ldes G, Mioulane M, Wright JS, Liu AQ, Novak P, Merkely B, Gorelik J, Schneider MD, Ali NN, Harding SE. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy? J Mol Cell Cardiol 50(2):367-376, 2011. Epub 2010 Nov 1.
11. Gong Z, Niklason LE. Small-diameter human vessel wall engineered from bone marrow-derived mesenchymal stem cells (hMSCs). FASEB J 22(6):1635-1648, 2008. Epub 2008 Jan 16.
12. Hamilton DW, Maul TM, Vorp DA. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications. Tissue Engineering 10(3-4):361-369, 2004.
13. Harada M, Osuga Y, Hirota Y, Koga K, Morimoto C, Hirata T, Yoshino O, Tsutsumi O, Yano T, Taketani Y. Mechanical stretch stimulates interleukin-8 production in endometrial stromal cells: possible implications in endometrium-related events. J Clin Endocrinol Metab 90(2):1144-8, 2005.
14. Harada M, Osuga Y, Takemura Y, Yoshino O, Koga K, Hirota Y, Hirata T, Morimoto C, Yano T, Taketani Y. Mechanical stretch upregulates insulin-like growth factor binding protein-1 (IGFBP-1) secretion from decidualized endometrial stromal cells. Am J Physiol Endocrinol Metab 290(2):E268-72, 2006
15. Hegarty PK, Watson RW, Coffey RN, Webber MM, Fitzpatrick JM. Effects of cyclic stretch on prostatic cells in culture. J Urol 168(5):2291-2295, 2002.
16. Huang CH, Chen MH, Young TH, Jeng JH, Chen YJ. Interactive effects of mechanical stretching and extracellular matrix proteins on initiating osteogenic differentiation of human mesenchymal stem cells. J Cell Biochem 108(6):1263-1273, 2009.
17. Jakkaraju S, Zhe X, Pan D, Choudhury R, Schuger L. TIPs are tension-responsive proteins involved in myogenic versus adipogenic differentiation. Developmental Cell 9(1):39-49, 2005.
18. Kang MN, Yoon HH, Seo YK, Park JK. Effect of mechanical stimulation on the differentiation of cord stem cells. Connect Tissue Res 53(2):149-159, 2012. Epub 2011 Dec 7.
19. Koike M, Shimokawa H, Kanno Z, Ohya K, Soma K. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab 23(3):219-225, 2005.
20. Ku CH, Johnson PH, Batten P, Sarathchandra P, Chambers RC, Taylor PM, Yacoub MH, Chester AH. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res 71(3):548-556, 2006. Epub 2006 Apr 7.
21. Kurpinski K, Park J, Thakar RG, Li S. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol Cell Biomech 3(1):21-34, 2006.
FLEXCELL? INTERNATIONAL CORPORATION
60
22. Lee EK, Lee JS, Park HS, Kim CH, Gin YJ, Son Y. Cyclic stretch stimulates cell proliferation of human mesenchymal stem cells but do not induce their apoptosis and differentiation. Tissue Engineering and Regenerative Medicine 2(1):29-33, 2005.
23. Lee WC, Maul TM, Vorp DA, Rubin JP, Marra KG. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol 6(4):265-273, 2007. Epub 2006 Aug 12.
24. MacQuarrie RA, Fang Chen Y, Coles C, Anderson GI. Wear-particle-induced osteoclast osteolysis: the role of particulates and mechanical strain. J Biomed Mater Res B Appl Biomater 69(1):104-112, 2004.
25. Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 81(3):523-530, 2007.
26. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88(3):359-68, 2004.
27. Payne TR, Oshima H, Okada M, Momoi N, Tobita K, Keller BB, Peng H, Huard J. A relationship between vascular endothelial growth factor, angiogenesis, and cardiac repair after muscle stem cell transplantation into ischemic hearts. J Am Coll Cardiol 50(17):1677-1684, 2007.
28. Rahnert J, Fan X, Case N, Murphy TC, Grassi F, Sen B, Rubin J. The role of nitric oxide in the mechanical repression of RANKL in bone stromal cells. Bone 43(1):48-54, 2008. Epub 2008 Mar 20.
29. Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater 11:82-91, 2012. Epub 2012 Feb 3.
30. Rubin J, Fan X, Biskobing DM, Taylor WR, Rubin CT. Osteoclastogenesis is repressed by mechanical strain in an in vitro model. J Orthop Res 17(5):639-645, 1999.
31. Rubin J, Murphy T, Nanes MS, Fan X. Mechanical strain inhibits expression of osteoclast differentiation factor by murine stromal cells. Am J Physiol Cell Physiol 278(6):C1126-C1132, 2000.
32. Rubin J, Murphy TC, Fan X, Goldschmidt M, Taylor WR. Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J Bone Miner Res 17(8):1452-1460, 2002.
33. Rubin J, Murphy TC, Rahnert J, Song H, Nanes MS, Greenfield EM, Jo H, Fan X. Mechanical inhibition of RANKL expression is regulated by H-Ras-GTPase. J Biol Chem 281(3):1412-1418, 2006.
34. Rubin J, Murphy TC, Zhu L, Roy E, Nanes MS, Fan X. Mechanical strain differentially regulates endothelial nitric-oxide synthase and receptor activator of nuclear κB ligand expression via ERK1/2 MAPK. J Biol Chem 278(36):34018-34025, 2003.
35. Saha S, Ji L, de Pablo JJ, Palecek SP. Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol 206(1):126-37, 2006.
36. Saha S, Ji L, de Pablo JJ, Palecek SP. TGFβ/Activin/Nodal pathway in inhibition of human embryonic stem cell differentiation by mechanical strain. Biophys J 94(10):4123-4133, 2008. Epub 2008 Jan 30.
FLEXCELL? INTERNATIONAL CORPORATION
61
37. Schmelter M, Ateghang B, Helmig S, Wartenberg M, Sauer H. Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20:1182-1184, 2006.
38. Sen B, Xie Z, Case N, Ma M, Rubin C, Rubin J. Mechanical strain inhibits adipogenesis in mesenchymal stem cells by stimulating a durable β-catenin signal. Endocrinology 149(12):6065-6075, 2008. Epub 2008 Aug 7.
39. Simionescu A, Tedder ME, Chuang T, Simionescu DT. Lectin and antibody-based histochemical techniques for cardiovascular tissue engineering. Journal of Histotechnology 34(1):20-28, 2011.
40. Simmons CA, Matlis S, Thornton AJ, Chen S, Wang CY, Mooney DJ. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway. Journal of Biomechanics 36(8):1087-1096, 2003.
41. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459-3465, 2006.
42. Throm Quinlan AM, Sierad LN, Capulli AK, Firstenberg LE, Billiar KL. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6(8): e23272, 2011. doi:10.1371/journal.pone.0023272.
43. Valero MC, Huntsman HD, Liu J, Zou K, Boppart MD. Eccentric exercise facilitates mesenchymal stem cell appearance in skeletal muscle. PLoS One 7(1):e29760, 2012. Epub 2012 Jan 11.
44. Wall ME, Rachlin A, Otey CA, Loboa EG. Human adipose-derived adult stem cells upregulate palladin during osteogenesis and in response to cyclic tensile strain. American Journal of Physiology: Cell Physiology 293(5):C1532-C1538, 2007. Epub 2007 Aug 8.
45. Ward DF, Salasznyk RM, Klees RF, Backiel J, Agius P, Bennett K, Boskey A, Plopper GE. Gene focusing and promotes osteogenic differentiation of human mesenchymal stem cells through an extracellular-related kinase-dependent pathway. Stem Cells and Development 16:467–479, 2007.
46. Wilson CJ, Kasper G, Schütz MA, Duda GN. Cyclic strain disrupts endothelial network formation on Matrigel. Microvasc Res 78(3):358-63, 2009. Epub 2009 Aug 18.
47. Wozniak M, Fausto A, Carron CP, Meyer DM, Hruska KA. Mechanically strained cells of the osteoblast lineage organize their extracellular matrix through unique sites of αVβ3-integrin expression. J Bone Miner Res 15(9):1731-1745, 2000.
48. Yu HC, Wu TC, Chen MR, Liu SW, Chen JH, Lin KM. Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways. J Bone Miner Res 25(5):1128-1137, 2010.
Synovial
1. Bader RA, Wagoner KL. Modulation of the response of rheumatoid arthritis synovial fibroblasts to proinflammatory stimulants with cyclic tensile strain. Cytokine 51(1):35-41, 2010.
FLEXCELL? INTERNATIONAL CORPORATION
62
2. Hirata H, Nagakura T, Tsujii M, Morita A, Fujisawa K, Uchida A. The relationship of VEGF and PGE2 expression to extracellular matrix remodelling of the tenosynovium in the carpal tunnel syndrome. J Pathol 204(5):605-612, 2004.
3. Lange F, Hartl S, Ungethuem U, Kuban RJ, Hammerschmidt S, Faber S, Morawietz L, Wirtz H, Emmrich F, Krenn V, Sack U. Anti-TNF effects on destructive fibroblasts depend on mechanical stress. Scand J Immunol 64(5):544-553, 2006.
4. Momberger TS, Levick JR, Mason RM. Hyaluronan secretion by synoviocytes is mechanosensitive. Matrix Biology 24(8):510-519, 2005.
5. Momberger TS, Levick JR, Mason RM. Mechanosensitive synoviocytes: a Ca2+ -PKCα-MAP kinase pathway contributes to stretch-induced hyaluronan synthesis in vitro. Matrix Biol 25(5):306-316, 2006.
6. Sambajon VV, Cillo JE, Gassner RJ, Buckley MJ. The effects of mechanical strain on synovial fibroblasts. Journal of Oral and Maxillofacial Surgery 61(6):707-712, 2003.
7. Tsujii M, Hirata H, Yoshida T, Imanaka-Yoshida K, Morita A, Uchida A. Involvement of tenascin-C and PG-M/versican in flexor tenosynovial pathology of idiopathic carpal tunnel syndrome. Histol Histopathol 21(5):511-518, 2006.
Tendon
1. Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J Tissue Eng Regen Med 2(8):521-524, 2008.
2. Almekinders LC, Banes AJ, Ballenger CA. Effects of repetitive motion on human fibroblasts. Med Sci Sports Exerc 25(5):603-607, 1993.
3. Archambault J, Tsuzaki M, Herzog W, Banes AJ. Stretch and interleukin-1β induce matrix metalloproteinases in rabbit tendon cells in vitro. Journal of Orthopaedic Research 20(1):36-39, 2002.
4. Arnoczky SP, Tian T, Lavagnino M, Gardner K, Schuler P, Morse P. Activation of stress-activated protein kinases (SAPK) in tendon cells following cyclic strain: the effects of strain frequency, strain magnitude, and cytosolic calcium. Journal of Orthopaedic Research 20(5):947-952, 2002.
5. Backman LJ, Fong G, Andersson G, Scott A, Danielson P. Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation. PLoS One 6(11):e27209, 2011. Epub 2011 Nov 1.
6. Banes AJ, Gilbert J, Taylor D, Monbureau O. A new vacuum-operated stress-providing instrument that applies static or variable duration cyclic tension or compression to cells in vitro. J Cell Sci 75:35-42, 1985.
7. Banes AJ, Horesovsky G, Larson C, Tsuzaki M, Judex S, Archambault J, Zernicke R, Herzog W, Kelley S, Miller L. Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage 7(1):141-153, 1999.
8. Banes AJ, Tsuzaki M, Lawrence WT, Ralphs J, Benjamin M, Pederson D, Brown T. Gap junction connexin expression is upregulated by cyclic mechanical load in avian tendon cells. Biorheology 32(2):177, 1995.
FLEXCELL? INTERNATIONAL CORPORATION
63
9. Banes AJ, Tsuzaki M, Peiqi H, Brigman B, Brown T, Almekinders L, Lawrence WT, Fischer T. PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. Journal of Biomechanics 28(12):1505-1513, 1995.
10. Banes AJ, Tsuzaki M, Yang X, Faber J, Brown T, Boitano S. Uniform biaxial strain stimulates immediate and downstream responses in tendon cells. Annals of Biomedical Engineering 25(1):S77, 1997.
11. Banes AJ, Weinhold P, Yang X, Tsuzaki M, Bynum D, Bottlang M, Brown T. Gap junctions regulate responses of tendon cells ex vivo to mechanical loading. Clin Orthop Relat Res (367 Suppl):S356-S370, 1999.
12. Chen CH, Marymont JV, Huang MH, Geyer M, Luo ZP, Liu X. Mechanical strain promotes fibroblast gene expression in presence of corticosteroid. Connect Tissue Res 48(2):65-9, 2007.
13. Elfervig M, Archambault J, Herzog W, Bynum D, Banes AJ. Mechanical stretching induces increased intracellular Ca2+ in human tendon cells [abstract]. Transactions of the 47th Annual Meeting of the Orthopaedic Research Society 26:566, 2001.
14. Elfervig MK, Yang X, Tsuzaki M, Banes AJ. Mechanical strain and norepinephrine synergize to increase Ca2+ signaling and cell coupling in tendon cells [abstract]. Transactions of the 48th Annual Meeting of the Orthopaedic Research Society 27:596, 2002.
15. Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967-979, 2003.
16. Gilbert JA, Weinhold PS, Banes AJ, Link GW, Jones GL. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. Journal of Biomechanics 27(9):1169-1177, 1994.
17. Hirata H, Nagakura T, Tsujii M, Morita A, Fujisawa K, Uchida A. The relationship of VEGF and PGE2 expression to extracellular matrix remodelling of the tenosynovium in the carpal tunnel syndrome. J Pathol 204(5):605-612, 2004.
18. Qi J, Chi L, Bynum D, Banes AJ. Gap junctions in IL-1β-mediated cell survival response to strain. J Appl Physiol 110(5):1425-1431, 2011. Epub 2011 Jan 6.
19. Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes AJ. Interleukin-1β increases elasticity of human bioartificial tendons. Tissue Eng 12(10):2913-2925, 2006.
20. Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D, Guilak F, Banes AJ. IL-1β decreases the elastic modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.
21. Ralphs JR, Waggett AD, Benjamin M. Actin stress fibres and cell-cell adhesion molecules in tendons: organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biology 21(1):67-74, 2002.
22. Triantafillopoulos IK, Banes AJ, Bowman KF Jr, Maloney M, Garrett WE Jr, Karas SG. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons. Am J Sports Med 32(4):934-943, 2004.
23. Triantafillopoulos IK, Banes AJ, Elfervig MK, Garrett WE, Karas SG. Nandrolone decanoate and loading enhance intercellular calcium signalling in human supraspinatus tendon cells [abstract]. J Bone Joint Surg Br Orthopaedic Proceedings 86-B:171, 2004.
24. Tsujii M, Hirata H, Yoshida T, Imanaka-Yoshida K, Morita A, Uchida A. Involvement of tenascin-C and PG-M/versican in flexor tenosynovial pathology of idiopathic carpal tunnel syndrome. Histol Histopathol 21(5):511-518, 2006.
FLEXCELL? INTERNATIONAL CORPORATION
64
25. Tsuzaki M, Bynum D, Almekinders L, Faber J, Banes AJ. Mechanical loading stimulates ecto-ATPase activity in human tendon cells. J Cell Biochem 96(1):117-125, 2003.
26. Tsuzaki M, Bynum D, Almekinders L, Yang X, Faber J, Banes AJ. ATP modulates load-inducible IL-1β, COX 2, and MMP-3 gene expression in human tendon cells. J Cell Biochem 89(3):556-562, 2003.
27. Wall ME, Banes AJ. Mechanically-induced strain upregulates connexin-43 mRNA expression in tendon cells [abstract]. Transactions of the 50th Annual Meeting of the Orthopaedic Research Society 29:827, 2004.
28. Wall ME, Otey C, Qi J, Banes AJ. Connexin 43 is localized with actin in tenocytes. Cell Motil Cytoskeleton 64(2):121-130, 2007.
29. Wall ME, Weinhold PS, Siu T, Brown TD, Banes AJ. Comparison of cellular strain with applied substrate strain in vitro. J Biomech 40(1):173-181, 2007.
Uterine
1. Korita D, Itoh H, Sagawa N, Yura S, Yoshida M, Kakui K, Takemura M, Nuamah MA, Fujii S. Cyclic mechanical stretching and interleukin-1α synergistically up-regulate prostacyclin secretion in cultured human uterine myometrial cells. Gynecol Endocrinol 18(3):130-7, 2004.
2. Korita D, Sagawa N, Itoh H, Yura S, Yoshida M, Kakui K, Takemura M, Yokoyama C, Tanabe T, Fujii S. Cyclic mechanical stretch augments prostacyclin production in cultured human uterine myometrial cells from pregnant women: possible involvement of up-regulation of prostacyclin synthase expression. J Clin Endocrinol Metab 87(11):5209-5219, 2002.
3. Mohan AR, Sooranna SR, Lindstrom TM, Johnson MR, Bennett PR. The effect of mechanical stretch on cyclooxygenase type 2 expression and activator protein-1 and nuclear factor-κB activity in human amnion cells. Endocrinology 148(4):1850-1857, 2007. Epub 2007 Jan 11.
4. Sooranna SR, Engineer N, Loudon JA, Terzidou V, Bennett PR, Johnson MR. The mitogen-activated protein kinase dependent expression of prostaglandin H synthase-2 and interleukin-8 messenger ribonucleic acid by myometrial cells: the differential effect of stretch and interleukin-1β. J Clin Endocrinol Metab 90(6):3517-3527, 2005.
5. Sooranna SR, Lee Y, Kim LU, Mohan AR, Bennett PR, Johnson MR. Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 transcription factor in human myometrial cells. Mol Hum Reprod 10(2):109-113, 2004.
6. Takemura M, Itoh H, Sagawa N, Yura S, Korita D, Kakui K, Hirota N, Fujii S. Cyclic mechanical stretch augments both interleukin-8 and monocyte chemotactic protein-3 production in the cultured human uterine cervical fibroblast cells. Mol Hum Reprod 10(8):573-580, 2004.
7. Takemura M, Itoh H, Sagawa N, Yura S, Korita D, Kakui K, Kawamura M, Hirota N, Maeda H, Fujii S. Cyclic mechanical stretch augments hyaluronan production in cultured human uterine cervical fibroblast cells. Mol Hum Reprod 11(9):659-665, 2005.
8. Yoshida M, Sagawa N, Itoh H, Yura S, Takemura M, Wada Y, Sato T, Ito A, Fujii S. Prostaglandin F(2α), cytokines and cyclic mechanical stretch augment matrix
FLEXCELL? INTERNATIONAL CORPORATION
65
metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol Hum Reprod 8(7):681-687, 2002.
Uterine/myometrial smooth muscle cells
9. Dalrymple A, Mahn K, Poston L, Songu-Mize E, Tribe R. Mechanical stretch regulates TrpC proteins and calcium entry in human myometrial smooth muscle cells [abstract]. J Soc Gynecol Invest 11(2 Suppl):225A, 2004.
10. Dalrymple A, Mahn K, Poston L, Songu-Mize E, Tribe RM. Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod 13(3):31-39, 2007.
11. Loudon JA, Sooranna SR, Bennett PR, Johnson MR. Mechanical stretch of human uterine smooth muscle cells increases IL-8 mRNA expression and peptide synthesis. Mol Hum Reprod 10(12):895-899, 2004.
12. Mitchell JA, Shynlova O, Langille BL, Lye SJ. Mechanical stretch and progesterone differentially regulate activator protein-1 transcription factors in primary rat myometrial smooth muscle cells. Am J Physiol Endocrinol Metab 287(3):E439-E445, 2004.
13. Oldenhof AD, Shynlova OP, Liu M, Langille BL, Lye SJ. Mitogen-activated protein kinases mediate stretch-induced c-fos mRNA expression in myometrial smooth muscle cells. Am J Physiol Cell Physiol 283(5):C1530-C1539, 2002.
14. Shynlova OP, Oldenhof AD, Liu M, Langille L, Lye SJ. Regulation of c-fos expression by static stretch in rat myometrial smooth muscle cells. Am J Obstet Gynecol 186(6):1358-1365, 2002.
15. Shynlova O, Tsui P, Dorogin A, Lye SJ. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J Immunol 181(2):1470-1479, 2008.
16. Sooranna SR, Engineer N, Liang Z, Bennett PR, Johnson MR; Imperial College Parturition Research Group. Stretch and interleukin 1β: pro-labour factors with similar mitogen-activated protein kinase effects but differential patterns of transcription factor activation and gene expression. J Cell Physiol 212(1):195-206, 2007.
17. Sooranna SR, Grigsby P, Myatt L, Bennett PR, Johnson MR. Prostanoid receptors in human uterine myocytes: the effect of reproductive state and stretch. Mol Hum Reprod 11(12):859-864, 2005.
18. Sooranna SR, Grigsby PL, Engineer N, Liang Z, Sun K, Myatt L, Johnson MR. Myometrial prostaglandin E2 synthetic enzyme mRNA expression: spatial and temporal variations with pregnancy and labour. Mol Hum Reprod 12(10):625-631, 2006.
19. Terzidou V, Sooranna SR, Kim LU, Thornton S, Bennett PR, Johnson MR. Mechanical stretch up-regulates the human oxytocin receptor in primary human uterine myocytes. J Clin Endocrinol Metab 90(1):237-246, 2005.
Other Cell Types
1. Alman BA, Greel DA, Ruby LK, Goldberg MJ, Wolfe HJ. Regulation of proliferation and platelet-derived growth factor expression in palmar fibromatosis (Dupuytren contracture) by mechanical strain. J Orthop Res 14(5):722-8, 1996.
2. Balestrini JL, Billiar KL. Magnitude and duration of stretch modulate fibroblast remodeling. J Biomech Eng 131(5):051005, 2009.
FLEXCELL? INTERNATIONAL CORPORATION
66
3. Branski RC, Perera P, Verdolini K, Rosen CA, Hebda PA, Agarwal S. Dynamic biomechanical strain inhibits IL-1β-induced inflammation in vocal fold fibroblasts. J Voice 21(6):651-660, 2007. Epub 2006 Aug 14.
4. Ferdous Z, Lazaro LD, Iozzo RV, H??k M, Grande-Allen KJ. Influence of cyclic strain and decorin deficiency on 3D cellularized collagen matrices. Biomaterials 29(18):2740-2748, 2008. Epub 2008 Apr 3.
5. Foolen J, Deshpande VS, Kanters FM, Baaijens FP. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials 33(30):7508-7518, 2012. Epub 2012 Jul 20.
6. Giannone G, Jiang G, Sutton DH, Critchley DR, Sheetz MP. Talin1 is critical for force-dependent reinforcement of initial integrin-cytoskeleton bonds but not tyrosine kinase activation. J Cell Biol 163(2):409-419, 2003.
7. Han B, Bai XH, Lodyga M, Xu J, Yang BB, Keshavjee S, Post M, Liu M. Conversion of mechanical force into biochemical signaling. J Biol Chem 279(52):54793-54801, 2004.
8. Jing Q, Guang-yun Z, Zhen T, Yue Z, Jiang-bo Y, Xiao Y. Effects of p38MAPK signaling pathway on cyclic tensile stress-induced fibroblast apoptosis. Journal of Clinical Rehabilitative Tissue Engineering Research 15(20):3789-3792, 2011.
9. Lee SK, Lee CY, Kook YA, Lee SK, Kim EC. Mechanical stress promotes odontoblastic differentiation via the heme oxygenase-1 pathway in human dental pulp cell line. Life Sci 86(3-4):107-114, 2010. Epub 2009 Dec 3.
10. Lutz R, Sakai T, Chiquet M. Pericellular fibronectin is required for RhoA-dependent responses to cyclic strain in fibroblasts. J Cell Sci 123(Pt 9):1511-1521, 2010. Epub 2010 Apr 7.
11. Matheson LA, Maksym GN, Santerre JP, Labow RS. Cyclic biaxial strain affects U937 macrophage-like morphology and enzymatic activities. J Biomed Mater Res A 76(1):52-62, 2006.
12. Matheson LA, Maksym GN, Santerre JP, Labow RS. Differential effects of uniaxial and biaxial strain on U937 macrophage-like cell morphology: Influence of extracellular matrix type proteins. J Biomed Mater Res A 81:971-981, 2007.
13. Matheson LA, Maksym GN, Santerre JP, Labow RS. The functional response of U937 macrophage-like cells is modulated by extracellular matrix proteins and mechanical strain. Biochem Cell Biol 84(5):763-773, 2006.
14. Osada T, Watanabe S, Tanaka H, Hirose M, Miyazaki A, Sato N. Effect of mechanical strain on gastric cellular migration and proliferation during mucosal healing: role of Rho dependent and Rac dependent cytoskeletal reorganization. Gut 45(4):508-515, 1999.
15. Pereira AM, Tudor C, Kanger JS, Subramaniam V, Martin-Blanco E. Integrin-dependent activation of the JNK signaling pathway by mechanical stress. PLoS One 6(12):e26182, 2011. Epub 2011 Dec 13.
16. Sawada Y, Sheetz MP. Force transduction by Triton cytoskeletons. J Cell Bio 156:609-615, 2002.
17. Vollmer T, Hinse D, Kleesiek K, Dreier J. Interactions between endocarditis-derived Streptococcus gallolyticus subsp. gallolyticus isolates and human endothelial cells. BMC Microbiol 10:78, 2010.
FLEXCELL? INTERNATIONAL CORPORATION
67
18.Wehner S, Buchholz BM, Schuchtrup S, Rocke A, Schaefer N, Lysson M, Hirner A, Kalff JC. Mechanical strain and TLR4 synergistically induce cell-specific inflammatory gene expression in intestinal smooth muscle cells and peritoneal macrophages. Am J Physiol Gastrointest Liver Physiol 299(5):G1187-G1197, 2010. Epub 2010 Sep 9.
19. Yu J, Xie YJ, Xu D, Zhao SL. Effect of cyclic strain on cell morphology, viability and proliferation of human dental pulp cells in vitro. Shanghai Kou Qiang Yi Xue 18(6):599-603, 2009.
20. Zong W, Jallah ZC, Stein SE, Abramowitch SD, Moalli PA. Repetitive mechanical stretch increases extracellular collagenase activity in vaginal fibroblasts. Female Pelvic Med Reconstr Surg 16(5):257-262, 2010.
Reviews & Commentaries
1. Anderson JE, Wozniak AC. Satellite cell activation on fibers: modeling events in vivo — an invited review. Can J Physiol Pharmacol 82:300–310, 2004.
2. Brown TD. Techniques for mechanical stimulation of cells in vitro: a review. Journal of Biomechanics 33(1):3-14, 2000.
3. Cummins PM, Cotter EJ, Cahill PA. Hemodynamic regulation of metallopeptidases within the vasculature. Protein Pept Lett 11(5):433-442, 2004.
4. Cummins PM, von Offenberg Sweeney N, Killeen MT, Birney YA, Redmond EM, Cahill PA. Cyclic strain-mediated matrix metalloproteinase regulation within the vascular endothelium: a force to be reckoned with. Am J Physiol Heart Circ Physiol 292:H28–H42, 2007.
5. Gupta V, Grande-Allen KJ. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72(3):375-383, 2006. Epub 2006 Sep 1.
6. Hirst SJ, Martin JG, Bonacci JV, Chan V, Fixman ED, Hamid QA, Herszberg B, Lavoie JP, McVicker CG, Moir LM, Nguyen TT, Peng Q, Ramos-Barbon D, Stewart AG. Proliferative aspects of airway smooth muscle. Journal of Allergy and Clinical Immunology 114(2 Suppl):S2-S17, 2004.
7. Kurpinski K, Park J, Thakar RG, Li S. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain. Mol Cell Biomech 3(1):21-34, 2006.
8. McPartland JM. The endocannabinoid system: an osteopathic perspective. J Am Osteopath Assoc 108(10):586-600, 2008.
9. Noda M, Takuwa Y, Katoh T, Kurokawa K. Stretch-induced parathyroid hormone-related peptide gene expression: implication in the regulation of myogenic tone. Curr Opin Nephrol Hypertens 4(5):383-387, 1995.
10. Ostrow LW, Sachs F. Mechanosensation and endothelin in astrocytes-hypothetical roles in CNS pathophysiology. Brain Research Reviews 48(3):488-508, 2005.
11. Park JS, Huang NF, Kurpinski KT, Patel S, Hsu S, Li S. Mechanobiology of mesenchymal stem cells and their use in cardiovascular repair. Front Biosci 12:5098-5116, 2007.
12. Rakugi H, Yu H, Kamitani A, Nakamura Y, Ohishi M, Kamide K, Nakata Y, Takami S, Higaki J, Ogihara T. Links between hypertension and myocardial infarction. American Heart Journal 132(1 Pt 2 Su):213-221, 1996.
FLEXCELL? INTERNATIONAL CORPORATION
68
13. Songu-Mize E, Liu X, Hymel LJ. Effect of mechanical strain on expression of Na+,K+-ATPase α subunits in rat aortic smooth muscle cells. Amer J Med Sci 316(3):196-199, 1998.
14. Takei T, Mills I, Arai K, Sumpio BE. Molecular basis for tissue expansion: clinical implications for the surgeon. Plast Reconstr Surg 102(1):247-258, 1998.
15. Tanaka S, Hamanishi C, Kikuchi H, Fukuda K. Factors related to degradation of articular cartilage in osteoarthritis: a review. Semin Arthritis Rheum 27(6):392-399, 1998.
16. Thompson MS, Epari DR, Bieler F, Duda GN. In vitro models for bone mechanobiology: applications in bone regeneration and tissue engineering. Proc Inst Mech Eng H 224(12):1533-1541, 2010.
17. Vandenburgh HH. Mechanical forces and their second messengers in stimulating cell growth in vitro. Am J Physiol Regulatory Integrative Comp Physiol 262(3):R350-355, 1992.
18. Zhang Y, Sekar RB, McCulloch AD, Tung L. Cell cultures as models of cardiac mechanoelectric feedback. Prog Biophys Mol Biol 97(2-3):367-382, 2008. Epub 2008 Feb 16.
FLEXCELL? INTERNATIONAL CORPORATION
69
UNIFLEX? AND
UNIAXIAL TENSION
1. Bhatt KA, Chang EI, Warren SM, Lin SE, Bastidas N, Ghali S, Thibboneir A, Capla JM, McCarthy JG, Gurtner GC. Uniaxial mechanical strain: an in vitro correlate to distraction osteogenesis. J Surg Res 143(2):329-336, 2007. Epub 2007 Oct 22.
2. Boonen KJ, Langelaan ML, Polak RB, van der Schaft DW, Baaijens FP, Post MJ. Effects of a combined mechanical stimulation protocol: Value for skeletal muscle tissue engineering. J Biomech 43(8):1514-1521, 2010. Epub 2010 Feb 26.
3. Ghosh K, Thodeti CK, Dudley AC, Mammoto A, Klagsbrun M, Ingber DE. Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A 105(32):11305-11310, 2008. Epub 2008 Aug 6.
4. Hamilton DW, Maul TM, Vorp DA. Characterization of the response of bone marrow-derived progenitor cells to cyclic strain: implications for vascular tissue-engineering applications. Tissue Engineering 10(3-4):361-369, 2004.
5. Jones BF, Wall ME, Carroll RL, Washburn S, Banes AJ. Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech 38(8):1653-1664, 2005.
6. Lee WC, Maul TM, Vorp DA, Rubin JP, Marra KG. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol 6(4):265-273, 2007. Epub 2006 Aug 12.
7. Matheson LA, Jack FN, Maksym GN, Paul SJ, Labow RS. Characterization of the Flexcell Uniflex cyclic strain culture system with U937 macrophage-like cells. Biomaterials 27(2):226-233, 2006.
8. Matheson LA, Maksym GN, Santerre JP, Labow RS. Differential effects of uniaxial and biaxial strain on U937 macrophage-like cell morphology: Influence of extracellular matrix type proteins. J Biomed Mater Res A 81:971-981, 2007.
9. Matheson LA, Maksym GN, Santerre JP, Labow RS. The functional response of U937 macrophage-like cells is modulated by extracellular matrix proteins and mechanical strain. Biochem Cell Biol 84(5):763-773, 2006.
10. Sedding DG, Hermsen J, Seay U, Eickelberg O, Kummer W, Schwencke C, Strasser RH, Tillmanns H, Braun-Dullaeus RC. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res 96(6):635-642, 2005.
11. Sedding DG, Homann M, Seay U, Tillmanns H, Preissner KT, Braun-Dullaeus RC. Calpain counteracts mechanosensitive apoptosis of vascular smooth muscle cells in vitro and in vivo. FASEB J 22(2):579-589, 2008. Epub 2007 Sep 10.
12. Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE. TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104(9):1123-1130, 2009. Epub 2009 Apr 9.
13.Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86(12):1212-1216, 2007.
14. Wilson CJ, Kasper G, Schütz MA, Duda GN. Cyclic strain disrupts endothelial network formation on Matrigel. Microvasc Res 78(3):358-63, 2009. Epub 2009 Aug 18.
FLEXCELL? INTERNATIONAL CORPORATION
70
TISSUE TRAIN? AND
3D CULTURE SYSTEM
1. Abraham T, Kayra D, McManus B, Scott A. Quantitative assessment of forward and backward second harmonic three dimensional images of collagen Type I matrix remodeling in a stimulated cellular environment. J Struct Biol 180(1):17-25, 2012. doi: 10.1016/j.jsb.2012.05.004. Epub 2012 May 15.
2. Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J Tissue Eng Regen Med 2(8):521-524, 2008.
3. Allison DA, Wight TN, Ripp NJ, Braun KR, Grande-Allen KJ. Endogenous overexpression of hyaluronan synthases within dynamically cultured collagen gels: Implications for vascular and valvular disease. Biomaterials 29:2969-2976, 2008.
4. Charoenpanich A, Wall ME, Tucker CJ, Andrews DM, Lalush DS, Loboa EG. Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng Part A 17(21-22):2615-2627, 2011. Epub 2011 Jul 18.
5. Clause KC, Tinney JP, Liu LJ, Gharaibeh B, Huard J, Kirk JA, Shroff SG, Fujimoto KL, Wagner WR, Ralphe JC, Keller BB, Tobita K. A three-dimensional gel bioreactor for assessment of cardiomyocyte induction in skeletal muscle-derived stem cells. Tissue Eng Part C Methods 16(3):375-385, 2010.
6. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Engineering Part A 15(6):1373-1380, 2009.
7. Clause KC, Tinney JP, Liu JL, Keller BB, Huard J, Tobita K. p38MAP-kinase regulates cardiomyocyte proliferation and contractile properties of engineered early embryonic cardiac tissue [abstract]. Weinstein Cardiovascular Development Research Conference, Indianapolis, IN, 2007.
8. Clause KC, Tinney JP, Liu JL, Gharaibeh B, Fujimoto LK, Wagner WR, Ralphe JC, Keller BB, Huard J, Tobita K. Functioning engineered cardiac tissue from skeletal muscle derived stem cells [abstract]. 4th Annual Symposium of AHA Council on Basic Cardiovascular Sciences, Keystone CO, 2007.
9. Ferdous Z, Lazaro LD, Iozzo RV, H??k M, Grande-Allen KJ. Influence of cyclic strain and decorin deficiency on 3D cellularized collagen matrices. Biomaterials 29(18):2740-2748, 2008. Epub 2008 Apr 3.
10. Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967-979, 2003.
11. Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481-490, 2006.
12. Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor-β and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079, 2009. Epub 2008 Nov 14.
FLEXCELL? INTERNATIONAL CORPORATION
71
13. Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-1270, 2005.
14. Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 81(3):523-530, 2007.
15. Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 30(1):80-89, 2010. Epub 2009 Oct 29.
16. Qi J, Chi L, Bynum D, Banes AJ. Gap junctions in IL-1β-mediated cell survival response to strain. J Appl Physiol 110(5):1425-1431, 2011. Epub 2011 Jan 6.
17. Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen gels. J Appl Physiol 102(3):1152-60, 2007.
18. Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes AJ. Interleukin-1β increases elasticity of human bioartificial tendons. Tissue Eng 12(10):2913-2925, 2006.
19. Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D, Guilak F, Banes AJ. IL-1β decreases the elastic modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.
20. Qi J, Chi L, Wang J, Sumanasinghe R, Wall M, Tsuzaki M, Banes AJ. Modulation of collagen gel compaction by extracellular ATP is MAPK and NF-κB pathways dependent. Exp Cell Res 315(11):1990-2000, 2009. Epub 2009 Feb 23.
21. Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater 11:82-91, 2012. Epub 2012 Feb 3.
22. Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459-3465, 2006.
23. Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord 10:27, 2009.
24. Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291(4):H1829-37, 2006.
25. Triantafillopoulos IK, Banes AJ, Bowman KF Jr, Maloney M, Garrett WE Jr, Karas SG. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons. Am J Sports Med 32(4):934-943, 2004.
26. Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59, 2011. Epub 2011 May 19.
27. Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW. TGF-?1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439-1443, 2010. Epub 2010 Oct 12.
FLEXCELL? INTERNATIONAL CORPORATION
72
TENSION SYSTEM STRAIN PROFILES
1. Brown TD, Bottlang M, Pedersen DR, Banes AJ. Development and experimental validation of a fluid/structure-interaction finite element model of a vacuum-driven cell culture mechanostimulus system. Comput Methods Biomech Biomed Engin 3(1):65-78, 2000.
2. Brown TD, Bottlang M, Pedersen DR, Banes AJ. Loading paradigms--intentional and unintentional--for cell culture mechanostimulus. Am J Med Sci 316(3):162-168, 1998.
3. Colombo A, Cahill PA, Lally C. An analysis of the strain field in biaxial Flexcell membranes for different waveforms and frequencies. Proc Inst Mech Eng H 222(8):1235-1245, 2008.
4. Gilbert JA, Weinhold PS, Banes AJ, Link GW, Jones GL. Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro. Journal of Biomechanics 27(9):1169-1177, 1994.
5. Matheson LA, Jack FN, Maksym GN, Paul SJ, Labow RS. Characterization of the Flexcell Uniflex cyclic strain culture system with U937 macrophage-like cells. Biomaterials 27(2):226-233, 2006.
6. Throm Quinlan AM, Sierad LN, Capulli AK, Firstenberg LE, Billiar KL. Combining dynamic stretch and tunable stiffness to probe cell mechanobiology in vitro. PLoS ONE 6(8): e23272, 2011. doi:10.1371/journal.pone.0023272.
7. Vande Geest JP, Di Martino ES, Vorp DA. An analysis of the complete strain field within FlexercellTM membranes. Journal of Biomechanics 37:1923-1928, 2004.
APPLICATION OF TENSION SYSTEM
1. Bartalena G, Grieder R, Sharma RI, Zambelli T, Muff R, Snedeker JG. A novel method for assessing adherent single-cell stiffness in tension: design and testing of a substrate-based live cell functional imaging device. Biomed Microdevices 13(2):291-301, 2011.
2. Wiggins MJ, Anderson JM, Hiltner A. Biodegradation of polyurethane under fatigue loading. J Biomed Mater Res A 65(4):524-535, 2003.
3.

 

 

推荐仪器
  • *
  • *
  • *
  • *